A048695 Generalized Pellian with second term equal to 8.
1, 8, 17, 42, 101, 244, 589, 1422, 3433, 8288, 20009, 48306, 116621, 281548, 679717, 1640982, 3961681, 9564344, 23090369, 55745082, 134580533, 324906148, 784392829, 1893691806, 4571776441, 11037244688
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,1)
Programs
-
Maple
with(combinat): a:=n->6*fibonacci(n-1,2)+fibonacci(n,2): seq(a(n), n=1..26); # Zerinvary Lajos, Apr 04 2008
-
Mathematica
a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{7},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *) LinearRecurrence[{2,1},{1,8},30] (* Harvey P. Dale, May 01 2013 *)
Formula
a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=8.
a(n) = ((7+sqrt(2))(1+sqrt(2))^n - (7-sqrt(2))(1-sqrt(2))^n)/2*sqrt(2).
G.f.: (1+6*x)/(1 - 2*x - x^2). - Philippe Deléham, Nov 03 2008