cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048746 Partial sums of A048655.

Original entry on oeis.org

1, 6, 17, 44, 109, 266, 645, 1560, 3769, 9102, 21977, 53060, 128101, 309266, 746637, 1802544, 4351729, 10506006, 25363745, 61233500, 147830749, 356895002, 861620757, 2080136520, 5021893801, 12123924126, 29269742057, 70663408244, 170596558549, 411856525346, 994309609245
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{2,1},{1,5},30]] (* Harvey P. Dale, May 23 2012 *)
    LinearRecurrence[{3, -1, -1},{1, 6, 17},26] (* Ray Chandler, Aug 03 2015 *)
    Table[2 Fibonacci[n, 2] + 3 Fibonacci[n + 1, 2] - 2, {n, 0, 10}] (* Vladimir Reshetnikov, Sep 27 2016 *)

Formula

a(n) = 2*a(n-1) + a(n-2) + 4; a(0)=1, a(1)=6.
a(n) = ((6 + 5*sqrt(2))*(1 + sqrt(2))^n + (6 - 5*sqrt(2))*(1 - sqrt(2))^n)/4 - 2. [Corrected by Stefano Spezia, May 26 2024]
From Colin Barker, Sep 19 2012: (Start)
a(n) = 3*a(n-1) - a(n-2) - a(n-3).
G.f.: (1+3*x)/((1-x)*(1-2*x-x^2)). (End)
a(n) = 2*Pell(n) + 3*Pell(n+1) - 2, where Pell = A000129. - Vladimir Reshetnikov, Sep 27 2016
E.g.f.: exp(x)*(6*cosh(sqrt(2)*x) + 5*sqrt(2)*sinh(sqrt(2)*x) - 4)/2. - Stefano Spezia, May 26 2024

Extensions

Corrected and extended by T. D. Noe, Nov 07 2006