A003659
Shifts left under Stirling2 transform.
Original entry on oeis.org
1, 1, 2, 6, 26, 152, 1144, 10742, 122772, 1673856, 26780972, 496090330, 10519217930, 252851833482, 6832018188414, 205985750827854, 6885220780488694, 253685194149119818, 10250343686634687424, 452108221967363310278, 21676762640915055856716
Offset: 1
- S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..330
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- M. Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5. [_N. J. A. Sloane_, Sep 16 2012]
- Istvan Mezo, On powers of Stirling matrices, arXiv:0812.4047 [math.CO], 2008. [_Jonathan Vos Post_, Dec 22 2008]
- N. J. A. Sloane, Transforms
-
stirtr:= proc(p)
proc(n) add(p(k)*Stirling2(n,k), k=0..n) end
end:
a:= proc(n) option remember; `if`(n<3, 1, aa(n-1)) end:
aa:= stirtr(a):
seq(a(n), n=1..25); # Alois P. Heinz, Jun 22 2012
-
terms = 21; A[] = 0; Do[A[x] = Normal[Integrate[1 + A[Exp[x] - 1 + O[x]^(terms + 1)], x] + O[x]^(terms + 1)], terms];
CoefficientList[A[x], x]*Range[0, terms]! // Rest (* Jean-François Alcover, May 23 2012, updated Jan 12 2018 *)
-
{a(n)=local(A, E); if(n<0, 0, A=O(x); E=exp(x+x*O(x^n))-1; for(m=1, n, A=intformal( subst( 1+A, x, E+x*O(x^m)))); n!*polcoeff(A, n))} /* Michael Somos, Mar 08 2004 */
-
a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i, stirling(i, j, 2)*v[j])); v; \\ Seiichi Manyama, Jun 24 2022
A213357
E.g.f. satisfies A(x) = 1 + (exp(x) - 1) * A(exp(x) - 1).
Original entry on oeis.org
1, 1, 3, 16, 133, 1561, 24374, 485640, 11969843, 356348290, 12572687675, 517644938724, 24553141710156, 1327223189312606, 81005220402829714, 5537660009982114858, 421050946315817655785, 35387457515051683169307, 3269500807582223015227780
Offset: 0
1 + x + 3*x^2 + 16*x^3 + 133*x^4 + 1561*x^5 + 24374*x^6 + 485640*x^7 + ...
-
nmax=20; b = ConstantArray[0,nmax+1]; b[[1]]=1; Do[b[[n+1]] = Sum[k*b[[k]]*StirlingS2[n, k],{k,1,n}],{n,1,nmax-1}]; b (* Vaclav Kotesovec, Mar 12 2014 *)
-
{a(n) = local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = subst( 1 + x * A, x, exp( x + x * (A - A)) - 1)); n! * polcoeff( A, n))}
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*stirling(i, j, 2)*v[j])); v; \\ Seiichi Manyama, Jun 04 2022
A354729
E.g.f. A(x) satisfies A(x) = 1 + x * A(log(1+x)).
Original entry on oeis.org
1, 1, 2, 3, -4, -30, 234, 679, -35848, 305208, 6762360, -290545486, 2866197828, 186075548048, -10575881477630, 151622861284395, 14937532353298992, -1269964031741331704, 32904195657758601624, 2814524425307181390432, -395787864674458924551840
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*sum(j=0, i-1, stirling(i-1, j, 1)*v[j+1])); v;
A354730
E.g.f. A(x) satisfies: A(x) = 1 + x * A(-log(1-x)).
Original entry on oeis.org
1, 1, 2, 9, 68, 750, 11214, 216559, 5217176, 152742528, 5324034480, 217322508194, 10248159667140, 551968543756448, 33627829222316770, 2298114390067518705, 174893648144384932176, 14727538317383970615352, 1364522959678851181512504
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*sum(j=0, i-1, abs(stirling(i-1, j, 1))*v[j+1])); v;
A354574
E.g.f. A(x) satisfies A(x) = 1 + x * A(1 - exp(-x)).
Original entry on oeis.org
1, 1, 2, 3, -8, -65, 366, 4284, -71392, -377919, 28218760, -249587877, -14356069056, 587285561746, 153563287892, -954498079774950, 39921820513516256, 533333406684245239, -158979463609003391970, 8008135971419079188618, 190727236066813163686860
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*sum(j=0, i-1, (-1)^(i-j-1)*stirling(i-1, j, 2)*v[j+1])); v;
A355100
E.g.f. A(x) satisfies A(x) = 1 + 2 * x * A(exp(x) - 1).
Original entry on oeis.org
1, 2, 8, 60, 688, 11060, 234744, 6314196, 208825376, 8296326612, 388694773720, 21155834296476, 1321107368127408, 93662776272057356, 7471576015922028248, 665418775120254506940, 65714704859545872003008, 7153378915302503698953860
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*i*sum(j=0, i-1, stirling(i-1, j, 2)*v[j+1])); v;
A355101
E.g.f. A(x) satisfies A(x) = 1 + 3 * x * A(exp(x) - 1).
Original entry on oeis.org
1, 3, 18, 189, 2952, 63225, 1759374, 61261200, 2595618720, 130963993263, 7734817065600, 527276606418837, 41005535326851456, 3602215645092352314, 354438336568129922052, 38776184401330464272910, 4686507224871009709115232, 622194587177907979874119473
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=3*i*sum(j=0, i-1, stirling(i-1, j, 2)*v[j+1])); v;
A355128
E.g.f. A(x) satisfies A(x) = 1 + x * A(2 * (exp(x) - 1)).
Original entry on oeis.org
1, 1, 4, 54, 1928, 167770, 34128972, 15867798142, 16621680303888, 38813463431274402, 200266228576991017940, 2265670919773168963168454, 55816752493202168837392763544, 2976116188645489878229876218205674, 341574630434025162744892242114482410332
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*sum(j=0, i-1, 2^j*stirling(i-1, j, 2)*v[j+1])); v;
Showing 1-8 of 8 results.
Comments