cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048802 Number of labeled rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)

Original entry on oeis.org

1, 3, 16, 133, 1521, 22184, 393681, 8233803, 198342718, 5408091155, 164658043397, 5537255169582, 203840528337291, 8153112960102283, 352079321494938344, 16325961781591781401, 809073412162081974237, 42674870241038732398720, 2386963662244981472850709
Offset: 1

Views

Author

Christian G. Bower, Mar 15 1999

Keywords

Examples

			G.f. = x + 3*x^2 + 16*x^3 + 133*x^4 + 1521*x^5 + 22184*x^6 + 393681*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ ComposeSeries[ Series[t,{x,0,nn}],Series[Exp[x]-1 ,{x,0,nn}]],x]  (* Geoffrey Critzer, Sep 16 2012 *)
  • PARI
    {a(n) = sum( k=1, n, stirling(n, k, 2) * k^(k - 1))}; /* Michael Somos, Jun 09 2012 */
    
  • PARI
    {a(n) = n! * polcoeff( serreverse( log(1 + x*exp(-x +x*O(x^n))) ),n)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jan 24 2016

Formula

E.g.f.: B(exp(x)-1) where B is e.g.f. of A000169.
E.g.f.: Series_Reversion( log(1 + x*exp(-x)) ). - Paul D. Hanna, Jan 24 2016
a(n) = Sum_{k=1..n} Stirling2(n, k)*k^(k-1). - Vladeta Jovovic, Sep 17 2003
Stirling transform of A000169. - Michael Somos, Jun 09 2012
a(n) ~ sqrt(1+exp(1)) * n^(n-1) / (exp(n) * (log(1+exp(-1)))^(n-1/2)). - Vaclav Kotesovec, Feb 17 2014