A048862
Number of primes in the reduced residue system of n-th primorial number (=A002110(n)).
Original entry on oeis.org
0, 0, 1, 7, 42, 338, 3242, 42324, 646021, 12283522, 300369786, 8028642999, 259488750732, 9414916809082, 362597750396726, 15397728527812843, 742238179058722875, 40068968501510691877, 2251262473052300960808, 139566579945945392719394
Offset: 0
For n = 3, the 3rd primorial is 30, phi(30) = 8, a(3) = 8-1 = 7 since 1 is nonprime. See A048597.
For n = 4, the 4th primorial is 210, the size of its reduced residue system (RRS) is 48 of which 42 are primes and 6 are either composite numbers or 1.
a(17) corrected and a(18)-a(19) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Sep 03 2024
A286941
Irregular triangle read by rows: the n-th row corresponds to the totatives of the n-th primorial, A002110(n).
Original entry on oeis.org
1, 1, 5, 1, 7, 11, 13, 17, 19, 23, 29, 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209
Offset: 1
The triangle starts
1;
1, 5;
1, 7, 11, 13, 17, 19, 23, 29;
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209;
Cf.
A002110,
A005867,
A048862,
A057588,
A279864,
A286941,
A286942,
A309497,
A038110,
A058250,
A329815.
-
Table[Function[P, Select[Range@ P, CoprimeQ[#, P] &]]@ Product[Prime@ i, {i, n}], {n, 4}] // Flatten (* Michael De Vlieger, May 18 2017 *)
-
row(n) = my(P=factorback(primes(n))); select(x->(gcd(x, P) == 1), [1..P]); \\ Michel Marcus, Jun 02 2020
A285784
Possible nonprime residues of k > p# modulo p# for some primorial p# in A002110.
Original entry on oeis.org
1, 121, 143, 169, 187, 209, 221, 247, 289, 299, 323, 361, 377, 391, 403, 437, 481, 493, 527, 529, 533, 551, 559, 589, 611, 629, 667, 689, 697, 703, 713, 731, 767, 779, 793, 799, 817, 841, 851, 871, 893, 899, 901, 923, 943, 949, 961, 989, 1003, 1007, 1027, 1037, 1073, 1079, 1081
Offset: 1
Primorial(2) = 2*3 = 6 has two totatives (1 and 5), primorial(3) = 2*3*5 = 30 has eight totatives (1,7,11,13,17,19,23,29), etc.
Taking the union of these lists and removing the primes gives the sequence.
-
MapIndexed[Select[Range @@ #1, Function[k, And[If[First@ #2 == 1, ! PrimeQ@ k, CompositeQ@ k > 1], CoprimeQ[Last@ #1, k]]]] &, Partition[FoldList[#1 #2 &, 1, Prime@ Range@ 5], 2, 1]] // Flatten (* Michael De Vlieger, May 24 2017 *)
-
select( n->!isprime(n), setunion((S(p,M)=Set(primes([1,p*M])%M))(11,210), S(13,2310))) \\ M. F. Hasler, Mar 25 2019
Incorrect definition replaced and more terms added by
M. F. Hasler, Mar 25 2019
A287391
Nonprimes k that are a totative of more than one primorial p_n# = A002110(n).
Original entry on oeis.org
1, 169, 289, 323, 361, 391, 437, 493, 527, 529, 551, 589, 629, 667, 697, 703, 713, 731, 779, 799, 817, 841, 851, 893, 899, 901, 943, 961, 989, 1003, 1007, 1037, 1073, 1081, 1121, 1139, 1147, 1159, 1189, 1207, 1219, 1241, 1247, 1271, 1273, 1333, 1343, 1349, 1357, 1363, 1369, 1387, 1403, 1411
Offset: 1
From _Michael De Vlieger_, May 24 2017: (Start)
a(1) = 1 since 1 is coprime to all numbers.
169 is in the sequence since it is coprime to p_4# = 210 and p_5# = 2310 yet less than both, however prime(6) = 13 divides 169 thus it is not a totative of p_6# or any larger primorial. (End)
-
MapIndexed[Select[Range @@ #1, Function[k, Function[f, And[If[First@ #2 == 1, k == 1 || Total[f[[All, -1]]] > 1, Total[f[[All, -1]]] > 1], CoprimeQ[Last@ #1, k], f[[1, 1]] != Prime[First@ #2 + 1]]]@ FactorInteger[k]]] &, Partition[FoldList[#1 #2 &, 1, Prime@ Range@ 5], 2, 1]] // Flatten (* Michael De Vlieger, May 24 2017 *)
-
is(n,f=if(n>1,factor(n)[,1][1],4),P=1)={n!=f&&forprime(p=2,precprime(f-1)-1,n%p||return;(P*=p)>n&&return(1))} \\ M. F. Hasler, Oct 04 2018
A287390
Nonprimes k that are a totative of only one primorial P in A002110.
Original entry on oeis.org
121, 143, 187, 209, 221, 247, 299, 377, 403, 481, 533, 559, 611, 689, 767, 793, 871, 923, 949, 1027, 1079, 1157, 1261, 1313, 1339, 1391, 1417, 1469, 1651, 1703, 1781, 1807, 1937, 1963, 2041, 2119, 2171, 2197, 2249, 2329, 2363, 2533, 2567, 2669, 2771, 2839
Offset: 1
From _Michael De Vlieger_, May 24 2017: (Start)
The numbers 121, 143, 187, and 209 are in the sequence because these are nonprimes greater than p_3# = 30 but less than p_4# = 210 with minimum prime divisor p_5 = 11.
The number 169 is not in the sequence because, although it falls between 30 and 210, it is coprime to 210 and to 2310 and thus is a totative of both these primorials.
(End)
-
MapIndexed[Select[Range @@ #1, Function[k, Function[f, And[Total[f[[All, -1]]] > 1, CoprimeQ[Last@ #1, k], f[[1, 1]] == Prime[First@ #2 + 1]]]@ FactorInteger[k]]] &, Partition[FoldList[#1 #2 &, 1, Prime@ Range@ 6], 2, 1]] // Flatten (* Michael De Vlieger, May 24 2017 *)
A048980
Difference between number of nonprimes and primes in reduced residue system of primorial numbers.
Original entry on oeis.org
1, 1, 0, -6, -36, -196, -724, 7512, 366838, 11928316, 421130508, 14598816402, 584642184936, 25314953837836, 1128885572358548, 54492272309366314, 2950485568862138250, 213151926413154110951
Offset: 0
n=4, Q(4)=2*3*5*7=210, reduced residue system includes 48 terms:42 primes and 6 composites and 1: a(4)=6-42=-36.
-
Table[Function[P, EulerPhi@ P - 2 # &[PrimePi@ P - n]]@ Product[Prime@ i, {i, n}], {n, 0, 12}] (* Michael De Vlieger, May 08 2017 *)
A048982
Number of numbers which have a "prime-rich" reduced residue system (RRS) and binary order n.
Original entry on oeis.org
0, 0, 0, 1, 3, 8, 15, 22, 32, 50, 85, 80, 98, 84, 59, 37, 10, 2, 0, 0, 0
Offset: 0
In binary order (A029837) zone of 7, i.e., in [65,128], 22 numbers belong to A048868: 66, 68, 70, 72, 74, 76, 78, 80, 84, 88, 90, 96, 98, 100, 102, 104, 108, 110, 112, 114, 120, and 126. The largest term is 90090. The largest 4 are divisible by 2310, the largest 28 by 210, and the largest 103 by 30.
A286424
Number of partitions of p_n# into parts (q, k) both coprime to p_n#, with q prime and k nonprime, where p_n# = A002110(n).
Original entry on oeis.org
0, 0, 1, 1, 4, 110, 1432, 23338, 397661, 8193828, 212858328, 5941706227
Offset: 0
a(0) = 0 by definition. A002110(0) = 1; 1 is coprime to all numbers; the only possible totative pair is (1,1) and this does not include both a prime and a nonprime.
a(1) = 0 since, of the floor(A005867(1)/2) = 1 totative pair (1,1) of A002110(1) = 2, none include a both a prime and a nonprime.
a(2) = 1 since, the only totative pair (1,5) of A002110(1) = 6 includes both a prime and a nonprime.
a(3) = 1 since only (1,29) includes both a prime and a nonprime.
a(4) = 4 since (23,187), (41,169), (67,143), (89,121) include a both a prime and a nonprime.
- C. K. Caldwell, The Prime Glossary, Primorial.
- Eric Weisstein's World of Mathematics, Totative.
-
Table[Function[P, Count[Prime@ Range[n + 1, PrimePi[P]], q_ /; ! PrimeQ[P - q]]]@ Product[Prime@ i, {i, n}], {n, 0, 9}] (* Michael De Vlieger, May 08 2017 *)
Showing 1-8 of 8 results.
Comments