cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048881 a(n) = A000120(n+1) - 1 = wt(n+1) - 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3
Offset: 0

Views

Author

Keywords

Comments

Highest power of 2 dividing n-th Catalan number (A000108).
a(n) = 0 iff n = 2^k - 1, k=0,1,...
Appears to be number of binary left-rotations (iterations of A006257) to reach fixed point of form 2^k-1. Right-rotation analog is A063250. This would imply that for n >= 0, a(n)=f(n), recursively defined to be 0 for n=0, otherwise as f( ( (1-n)(1-p)(1-s) - (1-n-p-s) ) / 2) + p (s+1) / 2, where p = n mod 2 and s = - signum(n) (f(n<0) is A000120(-n)). - Marc LeBrun, Jul 11 2001
Let f(0) = 01, f(1) = 12, f(2) = 23, f(3) = 34, f(4) = 45, etc. Sequence gives concatenation of 0, f(0), f(f(0)), f(f(f(0))), ... Also f(f(...f(0)...)) converges to A000120. - Philippe Deléham, Aug 14 2003
C(n, k) is the number of occurrence of k in the n-th group of terms in this sequence read by rows: {0}; {0, 1}; {0, 1, 1, 2}; {0, 1, 1, 2, 1, 2, 2, 3}; {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; ... - Philippe Deléham, Jan 01 2004
Highest power of 2 dividing binomial(n,floor(n/2)). - Benoit Cloitre, Oct 20 2003
2^a(n) are numerators in the Maclaurin series for (sin x)^2. - Jacob A. Siehler, Nov 11 2009
Conjecture: a(n) is the sum of digits of the n-th word in A076478, for n >= 1; has been confirmed for n up to 20000. - Clark Kimberling, Jul 14 2021

Examples

			From _Omar E. Pol_, Mar 08 2011: (Start)
Sequence can be written in the following form (irregular triangle):
  0,
  0,1,
  0,1,1,2,
  0,1,1,2,1,2,2,3,
  0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,
  0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
  ...
Row sums are A001787.
(End)
		

Crossrefs

First differences of A078903.

Programs

  • Haskell
    a048881 n = a048881_list !! n
    a048881_list = c [0] where c (x:xs) = x : c (xs ++ [x,x+1])
    -- Reinhard Zumkeller, Mar 07 2011
    (Python 3.10+)
    def A048881(n): return (n+1).bit_count()-1 # Chai Wah Wu, Nov 15 2022
  • Maple
    A048881 := proc(n)
        A000120(n+1)-1 ;
    end proc:
    seq(A048881(n),n=0..200) ; # R. J. Mathar, Mar 12 2018
  • Mathematica
    a[n_] := IntegerExponent[ CatalanNumber[n], 2]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jun 21 2013 *)
  • PARI
    { a(n) = if( n<0, 0, n++; n /= 2^valuation(n,2); subst( Pol( binary( n ) ), x, 1) - 1 ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    {a(n) = if( n<0, 0, valuation( (2*n)! / n! / (n+1)!, 2 ) ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    a(n) = hammingweight(n+1) - 1; \\ Michel Marcus, Nov 15 2022
    

Formula

Writing n as 2^m+k with -1 <= k < 2^m-1, then a(n) = A000120(k+1). - Henry Bottomley, Mar 28 2000
a(n) = k if 2^k divides A000108(n) but 2^(k+1) does not divide A000108(n).
a(2*n) = a(n-1)+1, a(2*n+1) = a(n). - Vladeta Jovovic, Oct 10 2002
G.f.: (1/(x-x^2)) * (x^2/(1-x) - Sum_{k>=1} x^(2^k)/(1-x^(2^k))). - Ralf Stephan, Apr 13 2002
a(n) = A000120(A129760(n+1)). - Reinhard Zumkeller, Jun 30 2010
a(n+k) = A240857(n,k), 0 <= k <= n; in particular: a(n) = A240857(n,0). - Reinhard Zumkeller, Apr 14 2014
a(n) = (n+1)*2 - A101925(n+1). - Gleb Ivanov, Jan 12 2022

Extensions

Entry revised by N. J. A. Sloane, Jun 07 2009