cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048906 Octagonal heptagonal numbers.

Original entry on oeis.org

1, 297045, 69010153345, 16032576845184901, 3724720317758036481633, 865334473646149974640821781, 201036235582696134090746961388705, 46705140322177796790584365589105966085
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim(n->Infinity,a(n)/a(n-1)) = (sqrt(5)+sqrt(6))^8 = 116161+21208*sqrt(30). - Ant King, Dec 30 2011

Crossrefs

Programs

  • Magma
    I:=[1, 297045, 69010153345]; [n le 3 select I[n] else 232323*Self(n-1)-232323*Self(n-2)+Self(n-3): n in [1..15]]; // Vincenzo Librandi, Dec 28 2011
  • Mathematica
    CoefficientList[Series[(-133*x^2-64722*x-1)/(x^3-232323*x^2+ 232323*x- 1),{x,0,20}],x] (* or *) LinearRecurrence[{232323,-232323,1},{1,297045,69010153345},21] (* Harvey P. Dale, Dec 09 2011 *)

Formula

From Harvey P. Dale, Dec 09 2011: (Start)
G.f.: x*(-133*x^2-64722*x-1)/(x^3-232323*x^2+232323*x-1).
a(1)=1, a(2)=297045, a(3)=69010153345, a(n) = 232323*a(n-1)-232323*a(n-2)+a(n-3). (End)
From Ant King, Dec 30 2011: (Start)
a(n) = 232322*a(n-1)-a(n-2)+64856.
a(n) = 1/480*((17+2*sqrt(30))*(sqrt(5)+sqrt(6))^(8n-6)+(17-2*sqrt(30))*(sqrt(5)-sqrt(6))^(8n-6)-134).
a(n) = floor(1/480*(17+2*sqrt(30))*(sqrt(5)+sqrt(6))^(8n-6)). (End)