A048904
Indices of heptagonal numbers (A000566) which are also octagonal.
Original entry on oeis.org
1, 345, 166145, 80081401, 38599068993, 18604671173081, 8967412906355905, 4322274416192372985, 2083327301191817422721, 1004159436900039805378393, 484002765258517994374962561, 233288328695168773248926575865
Offset: 1
-
I:=[1, 345, 166145]; [n le 3 select I[n] else 483*Self(n-1)-483*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Dec 28 2011
-
LinearRecurrence[{483,-483,1},{1,345,166145},30]
A048905
Indices of octagonal numbers which are also heptagonal.
Original entry on oeis.org
1, 315, 151669, 73103983, 35235967977, 16983663460771, 8186090552123485, 3945678662460058839, 1901808929215196236753, 916667958203062126055947, 441832054044946729562729541, 212962133381706120587109582655, 102647306457928305176257256110009
Offset: 1
-
LinearRecurrence[{483,-483,1},{1,315,151669},20] (* Vincenzo Librandi, Dec 28 2011 *)
A342300
Least nonnegative number greater than the previous number which is simultaneously an n-gonal and (n+1)-gonal number.
Original entry on oeis.org
0, 1, 3, 36, 9801, 40755, 121771, 297045, 631125, 1212751, 2158695, 3617601, 5773825, 8851275, 13117251, 18886285, 26523981, 36450855, 49146175, 65151801, 85076025, 109597411, 139468635, 175520325, 218664901, 269900415, 330314391, 401087665, 483498225, 578925051, 688851955, 814871421
Offset: 0
a(3) is the least triangular and square number > 3, which is 36: A001110(2).
a(4) is the least square and pentagonal number > 36, which is 9801: A036353(2).
-
a[n_] := Intersection[ Table[ PolygonalNumber[n, i], {i, 2, 10000}], Table[ PolygonalNumber[n + 1, i], {i, 2, 10000}]][[1]]; a[0] = 0; a[1] = 1; Array[a, 30, 0] (* Or *)
a[n_] := a[n] = 6a[n - 1] -15a[n - 2] +20a[n - 3] -15a[n - 4] +6a[n - 5] -a[n - 6]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 36; a[4] = 9801; a[5] = 40755; a[6] = 121771; a[7] = 297045; a[8] = 631125; a[9] = 1212751; Array[a, 30, 0]
A378245
Numbers that are both k-gonal and (k+1)-gonal for some k >= 3.
Original entry on oeis.org
1, 36, 1225, 9801, 40755, 41616, 121771, 297045, 631125, 1212751, 1413721, 2158695, 3617601, 5773825, 8851275, 13117251, 18886285, 26523981, 36450855, 48024900, 49146175, 65151801, 85076025, 94109401, 109597411, 139468635, 175520325, 218664901, 269900415, 330314391
Offset: 1
a(2) = 36 is both the 8th triangular and the 6th square number.
a(3) = 1225 is both the 49th triangular and the 35th square number.
a(5) = 40755 is both the 165th pentagonal number and the 143th hexagonal number.
The subdiagonal of
A189216 is also a subsequence.
-
upto(limit) = my(terms=List(1)); for(k=3, oo, my(found=0); for(n=2, oo, my(a = (2*n - 1)^2, b = (4*n*(3*n - 5) + 6), c = (8*(n-1)^2 + 1), s = (a*k^2 - b*k + c), v = n * (n*k - k - 2*n + 4) / 2); if(issquare(s), my(t = sqrtint(s) + k - 3); if(t % (2*(k-1)) == 0, listput(terms, v); found += 1)); if(v >= limit, break)); if(found == 0, break)); Vec(vecsort(terms)); \\ Daniel Suteu, Dec 08 2024
Showing 1-4 of 4 results.
Comments