cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A036411 9-gonal square numbers.

Original entry on oeis.org

1, 9, 1089, 8281, 978121, 7436529, 878351769, 6677994961, 788758910641, 5996832038649, 708304623404049, 5385148492712041, 636056763057925561, 4835857349623374369, 571178264921393749929, 4342594514813297471521
Offset: 1

Views

Author

Jean-Francois Chariot (jeanfrancois.chariot(AT)afoc.alcatel.fr)

Keywords

Comments

From Ant King, Nov 17 2011: (Start)
lim_{n -> infinity} a(2n+1)/a(2n) = 1/625 * (36913 + 9864 * sqrt(14));
lim_{n -> infinity} a(2n)/a(2n-1) = 1/625 * (2417 + 624 * sqrt(14)).
(End)

Crossrefs

Programs

  • Magma
    I:=[1, 9, 1089, 8281]; [n le 4 select I[n] else 898*Self(n-2)-Self(n-4)+200: n in [1..20]]; // Vincenzo Librandi, Nov 18 2011
  • Maple
    a(0):=1:a(1):=9:a(2):=1089:a(3):=8281: a(4):=978121:for n from 0 to 20 do a(n+5):=a(n+4)+898*a(n+3)-898*a(n+2)-a(n+1)+a(n):od:seq(a(n),n=0..20); # Richard Choulet, May 08 2009
  • Mathematica
    LinearRecurrence[ {1, 898, - 898, - 1, 1 }, { 1, 9, 1089, 8281, 978121 }, 16] (* Ant King, Nov 17 2011 *)

Formula

O.g.f. f(z) = 1 + 9*z + ... = ((1 + 8*z + 182*z^2 + 8*z^3 + z^4)/((1-z)*(1 - 898*z^2 + z^4))). With the first values, for n > 0: a(n+5) = a(n+4) + 898*a(n+3) - 898*a(n+2) - a(n+1) + a(n). On every bisection modulo 2: a(n+2) = 30*a(n+1) - a(n) + 200. On every bisection modulo 2: a(n+1) = 449*a(n) + 100 + 60*sqrt(56*a(n)^2 + 25*a(n)). a(n) = -25/112 + (11/28 + (11/112)*sqrt(14))*(15 + 4*sqrt(14))^n + (11/28 - (11/112)*sqrt(14))*(15 - 4*sqrt(14))^n + (7/32 - (1/16)*sqrt(14))*(-15 + 4*sqrt(14))^n + (7/32 + (1/16)*sqrt(14))*(-15 - 4*sqrt(14))^n. - Richard Choulet, May 08 2009
a(n) = 898 * a(n-2) - a(n-4) + 200. - Ant King, Nov 17 2011

Extensions

More terms from Eric W. Weisstein
More terms from Richard Choulet, May 08 2009

A048910 Indices of 9-gonal numbers that are also square.

Original entry on oeis.org

1, 2, 18, 49, 529, 1458, 15842, 43681, 474721, 1308962, 14225778, 39225169, 426298609, 1175446098, 12774732482, 35224157761, 382815675841, 1055549286722, 11471695542738, 31631254443889, 343768050606289, 947882084029938, 10301569822645922, 28404831266454241
Offset: 1

Views

Author

Keywords

Comments

From Ant King, Nov 18 2011: (Start)
lim( n -> Infinity, a(2n+1)/a(2n)) = 1/25 * (137 + 36 * sqrt(14)) = 1/25 * (9 + 2 * sqrt(14))^2.
lim( n -> Infinity, a(2n)/a(2n-1)) = 1/25 * (39 + 8 * sqrt(14)).
(14 * a(n) - 5)^2 - 56 * A048911(n) ^ 2 = 25.
(End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[ {1, 30, - 30, -1, 1 }, {1, 2, 18, 49, 529}, 21 ] (* Ant King, Nov 18 2011 *)
  • PARI
    Vec(-x*(x^4+x^3-14*x^2+x+1)/((x-1)*(x^4-30*x^2+1)) + O(x^50)) \\ Colin Barker, Jun 22 2015

Formula

From Ant King, Nov 18 2011: (Start)
a(n) = 30 * a(n - 2) - a(n-4) - 10.
a(n) = a(n - 1) + 30 * a(n - 2) - 30 * a(n - 3) - a(n - 4) + a(n - 5).
Let p = 9 + 4 * sqrt(2) + sqrt(7) + 2 * sqrt(14) and q = 9 - 4 * sqrt(2) - sqrt(7) + 2 * sqrt(14). Then
a(n) = 1/56 * ( ( p - q * (-1) ^ n) * ( 2 * sqrt(2) + sqrt(7))^(n - 1) + ( p + q * (-1)^n) * ( 2 * sqrt(2) - sqrt(7))^n + 20 ).
a(n) = ceiling (1/56 * ( p - q * (-1) ^ n) * ( 2 * sqrt(2) + sqrt(7))^(n - 1) ).
G.f.: x * (1 + x - 14 * x^2 + x^3 + x^4) / ((1 - x) * (1 - 30 * x^2 + x^4)).
(End)
Showing 1-2 of 2 results.