A048912 Duplicate of A036411.
1, 9, 1089, 8281, 978121, 7436529, 878351769, 6677994961, 788758910641
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
142129 = 169*(5*169-4) = 377^2, so 142129 is the 169th 12-gonal number and the 377th square, hence 142129 is a term.
with(combinat): seq(fibonacci(4*n-2)^2, n=1..16);
Table[Fibonacci[4*n - 2]^2, {n, 1, 16}] (* Amiram Eldar, Mar 19 2021 *)
a(n) = fibonacci(4*n-2)^2; \\ Michel Marcus, Mar 21 2021
LinearRecurrence[ {0, 30, 0, - 1 }, { 1, 3, 33, 91 } , 21 ] (* Ant King, Nov 18 2011 *)
Vec(x*(x+1)^3/(x^4-30*x^2+1) + O(x^50)) \\ Colin Barker, Jun 22 2015
LinearRecurrence[ {1, 30, - 30, -1, 1 }, {1, 2, 18, 49, 529}, 21 ] (* Ant King, Nov 18 2011 *)
Vec(-x*(x^4+x^3-14*x^2+x+1)/((x-1)*(x^4-30*x^2+1)) + O(x^50)) \\ Colin Barker, Jun 22 2015
1755625 is a term because 625*(9*625-7)/2 = 1325^2 = 1755625; that means that 1755625 is the 625th 11-gonal number and the square of 1325.
for k from 0 to 8000000 do d:= k*(9*k-7)/2; if issqr(d) then print(k,sqrt(d),d); else fi; od:
Last /@ Solve[(18*x - 7)^2 - 72*y^2 == 49 && x >= 0 && y >= 0 && y < 10^16, {x, y}, Integers] /. Rule -> (#2^2 &) (* Amiram Eldar, Mar 31 2020 *)
concat(0, Vec(-x*(1 + 195*x + 29045*x^2 + 394670*x^3 + 29045*x^4 + 195*x^5 + x^6)/(-1 + x + 1331714*x^3 - 1331714*x^4 - x^6 + x^7) + O(x^20))) \\ Jinyuan Wang, Mar 31 2020
Comments