A048942 a(n) is twice the coefficient of the radical part in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 1).
2, 2, 1, 4, 6, 1, 2, 6, 1, 1, 8, 2, 2, 8, 78, 1, 1, 84, 10, 2, 2, 10, 3, 1, 4, 546, 1, 8, 12, 2, 2, 12, 8, 1, 10, 4, 1062, 3, 1, 7176, 14, 2, 2, 14, 5, 1, 132, 24, 4, 40, 26, 138, 1, 5, 16, 2, 2, 16, 11934, 1, 3, 60, 826, 4, 250, 10, 6, 39, 1, 12, 18, 2, 2, 18
Offset: 1
Keywords
References
- Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, 1993.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
- S. R. Finch, Class number theory
- Steven R. Finch, Class number theory [Cached copy, with permission of the author]
- Sean A. Irvine, Java program (github)
- Eric Weisstein's World of Mathematics, Fundamental Unit.
Programs
-
PARI
a(n) = my(A, D=n+(1+sqrtint(4*n))\2, d=sqrtint(D), p, q, t, u1, u2, v1, v2); if(d%2==D%2, p=d, p=d-1); u1=-p; u2=2; v1=1; v2=0; q=2; while(v2==0 || q!=t, A=(p+d)\q; t=p; p=A*q-p; if(t==p && v2!=0, return(2*u2*v2/q), t=A*u2+u1; u1=u2; u2=t; t=A*v2+v1; v1=v2; v2=t; t=q; q=(D-p^2)/q)); (u1*v2+u2*v1)/q; \\ Jinyuan Wang, Sep 08 2021
Extensions
Name edited by Michel Marcus, Jun 26 2020
Entry revised by Sean A. Irvine, Jul 16 2021
Comments