A049068 Complement of quarter-squares (A002620).
3, 5, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a049068 n = a049068_list !! (n-1) a049068 = filter ((== 0) . a240025) [0..] -- Reinhard Zumkeller, Jul 05 2014, Mar 18 2014, May 08 2012
-
Magma
[n+Ceiling(2*Sqrt(n)): n in [1..70]]; // Vincenzo Librandi, Dec 09 2015
-
Maple
A049068:=n->n + ceil(2*sqrt(n)); seq(A049068(n), n=1..100); # Wesley Ivan Hurt, Mar 01 2014
-
Mathematica
max = 100; Complement[Range[0, max], Table[Quotient[n^2, 4], {n, 0, 2*Sqrt[max]}]] (* Jean-François Alcover, Apr 18 2013 *) Table[n + Ceiling[2 * Sqrt[n]], {n, 100}] (* Wesley Ivan Hurt, Mar 01 2014 *) Select[Range[100],Mod[#,Floor[Sqrt[#]+1/2]]!=0&] (* Harvey P. Dale, May 27 2025 *)
-
PARI
{a(n) = if( n<1, 0, n+1 + sqrtint(4*n - 3))} /* Michael Somos, Oct 16 2006 */
-
Python
from math import isqrt def A049068(n): return n+1+isqrt((n<<2)-1) # Chai Wah Wu, Jul 27 2022
Formula
a(n) = n + A027434(n).
Other identities and observations. For all n >= 1:
A237347(a(n)) = 2. - Reinhard Zumkeller, Mar 18 2014
A240025(a(n)) = 0. - Reinhard Zumkeller, Jul 05 2014
a(n) = A080037(n) - 1. - Peter Kagey, Dec 08 2015
G.f.: x/(1-x)^2 + Sum_{k>=0} (x^(1+k^2)*(1+x^k))/(1-x)
= (x*Theta3(x)+ x^(3/4)*Theta2(x))/(2-2*x) + (3-x)*x/(2*(1-x)^2) where Theta3 and Theta2 are Jacobi Theta functions. - Robert Israel, Dec 09 2015
Comments