cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049068 Complement of quarter-squares (A002620).

Original entry on oeis.org

3, 5, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Michael Somos, Aug 06 1999

Keywords

Comments

Intersection of A000037 and A078358. - Reinhard Zumkeller, May 08 2012
Numbers k such that floor(sqrt(k)+1/2) does not divide k. - Wesley Ivan Hurt, Dec 01 2020

Crossrefs

Programs

  • Haskell
    a049068 n = a049068_list !! (n-1)
    a049068 = filter ((== 0) . a240025) [0..]
    -- Reinhard Zumkeller, Jul 05 2014, Mar 18 2014, May 08 2012
    
  • Magma
    [n+Ceiling(2*Sqrt(n)): n in [1..70]]; // Vincenzo Librandi, Dec 09 2015
    
  • Maple
    A049068:=n->n + ceil(2*sqrt(n)); seq(A049068(n), n=1..100); # Wesley Ivan Hurt, Mar 01 2014
  • Mathematica
    max = 100; Complement[Range[0, max], Table[Quotient[n^2, 4], {n, 0, 2*Sqrt[max]}]]  (* Jean-François Alcover, Apr 18 2013 *)
    Table[n + Ceiling[2 * Sqrt[n]], {n, 100}] (* Wesley Ivan Hurt, Mar 01 2014 *)
    Select[Range[100],Mod[#,Floor[Sqrt[#]+1/2]]!=0&] (* Harvey P. Dale, May 27 2025 *)
  • PARI
    {a(n) = if( n<1, 0, n+1 + sqrtint(4*n - 3))} /* Michael Somos, Oct 16 2006 */
    
  • Python
    from math import isqrt
    def A049068(n): return n+1+isqrt((n<<2)-1) # Chai Wah Wu, Jul 27 2022

Formula

a(n) = n + A027434(n).
Other identities and observations. For all n >= 1:
A237347(a(n)) = 2. - Reinhard Zumkeller, Mar 18 2014
A240025(a(n)) = 0. - Reinhard Zumkeller, Jul 05 2014
a(n) = A080037(n) - 1. - Peter Kagey, Dec 08 2015
G.f.: x/(1-x)^2 + Sum_{k>=0} (x^(1+k^2)*(1+x^k))/(1-x)
= (x*Theta3(x)+ x^(3/4)*Theta2(x))/(2-2*x) + (3-x)*x/(2*(1-x)^2) where Theta3 and Theta2 are Jacobi Theta functions. - Robert Israel, Dec 09 2015
a(n) = A000037(A000037(n)). - Gerald Hillier, Dec 01 2017