cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049200 Euler totient function phi applied to the n-th squarefree number.

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 12, 28, 8, 30, 20, 16, 24, 36, 18, 24, 40, 12, 42, 22, 46, 32, 52, 40, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 88, 72, 60, 46, 72, 96, 100, 32, 102, 48, 52, 106, 108, 40, 72
Offset: 1

Views

Author

Keywords

Examples

			The 12th squarefree number is 17 and phi(17) is 16, so a(12)=16.
		

Crossrefs

Programs

  • Haskell
    a049200 1 = 1
    a049200 n = product $ map (subtract 1) $ a265668_row n
    -- Reinhard Zumkeller, Dec 13 2015
  • Magma
    [EulerPhi(n): n in [1..300] | IsSquarefree(n)]; // Vincenzo Librandi, Jul 13 2015
    
  • Maple
    map(numtheory:-phi,select(numtheory:-issqrfree, [$1..1000])); # Robert Israel, Jul 12 2015
  • Mathematica
    EulerPhi/@Select[Range[200],SquareFreeQ] (* Harvey P. Dale, Jan 13 2015 *)
  • PARI
    lista(nn) = {for(n=1, nn, if (issquarefree(n), print1(eulerphi(n), ", ")));} \\ Michel Marcus, Jul 12 2015
    

Formula

a(n) = A000010(A005117(n)).
{phi(x) ; abs(mu(x)) = 1}.
a(n) = Product_{k = 1..A001221(n)} (A265668(n,k) + 1). - Reinhard Zumkeller, Dec 13 2015
Sum_{n>=1} 1/(A005117(n)*a(n)) = A082695. - Amiram Eldar, Oct 14 2020
Lim_{n->oo} Sum_{k=1..n} 1/a(k) - log(a(n)) = A083343 (Ward, 1927). - Amiram Eldar, Mar 05 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)^2/2) * Product_{p prime} (1 - 2/p^2 + 1/p^3) = A013661^2 * A065464 / 2 = 0.57938048727453660946... . - Amiram Eldar, Oct 09 2023