A049200 Euler totient function phi applied to the n-th squarefree number.
1, 1, 2, 4, 2, 6, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 12, 28, 8, 30, 20, 16, 24, 36, 18, 24, 40, 12, 42, 22, 46, 32, 52, 40, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 88, 72, 60, 46, 72, 96, 100, 32, 102, 48, 52, 106, 108, 40, 72
Offset: 1
Examples
The 12th squarefree number is 17 and phi(17) is 16, so a(12)=16.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- D. R. Ward, Some Series Involving Euler's Function, Journal of the London Mathematical Society, Vol. 1, No. 4 (1927), pp. 210-214.
Crossrefs
Programs
-
Haskell
a049200 1 = 1 a049200 n = product $ map (subtract 1) $ a265668_row n -- Reinhard Zumkeller, Dec 13 2015
-
Magma
[EulerPhi(n): n in [1..300] | IsSquarefree(n)]; // Vincenzo Librandi, Jul 13 2015
-
Maple
map(numtheory:-phi,select(numtheory:-issqrfree, [$1..1000])); # Robert Israel, Jul 12 2015
-
Mathematica
EulerPhi/@Select[Range[200],SquareFreeQ] (* Harvey P. Dale, Jan 13 2015 *)
-
PARI
lista(nn) = {for(n=1, nn, if (issquarefree(n), print1(eulerphi(n), ", ")));} \\ Michel Marcus, Jul 12 2015
Formula
{phi(x) ; abs(mu(x)) = 1}.
Lim_{n->oo} Sum_{k=1..n} 1/a(k) - log(a(n)) = A083343 (Ward, 1927). - Amiram Eldar, Mar 05 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)^2/2) * Product_{p prime} (1 - 2/p^2 + 1/p^3) = A013661^2 * A065464 / 2 = 0.57938048727453660946... . - Amiram Eldar, Oct 09 2023