A265668
Table read by rows: prime factors of squarefree numbers; a(1) = 1 by convention.
Original entry on oeis.org
1, 2, 3, 5, 2, 3, 7, 2, 5, 11, 13, 2, 7, 3, 5, 17, 19, 3, 7, 2, 11, 23, 2, 13, 29, 2, 3, 5, 31, 3, 11, 2, 17, 5, 7, 37, 2, 19, 3, 13, 41, 2, 3, 7, 43, 2, 23, 47, 3, 17, 53, 5, 11, 3, 19, 2, 29, 59, 61, 2, 31, 5, 13, 2, 3, 11, 67, 3, 23, 2, 5, 7, 71, 73, 2
Offset: 1
. n | T(n,*) A5117(n) n | T(n,*) A5117(n) n | T(n,*) A5117(n)
. ----+---------+------ ----+---------+------ ----+----------+------
. 1 | [1] | 1 21 | [3,11] | 33 41 | [2,3,11] | 66
. 2 | [2] | 2 22 | [2,17] | 34 42 | [67] | 67
. 3 | [3] | 3 23 | [5,7] | 35 43 | [3,23] | 69
. 4 | [5] | 5 24 | [37] | 37 44 | [2,5,7] | 70
. 5 | [2,3] | 6 25 | [2,19] | 38 45 | [71] | 71
. 6 | [7] | 7 26 | [3,13] | 39 46 | [73] | 73
. 7 | [2,5] | 10 27 | [41] | 41 47 | [2,37] | 74
. 8 | [11] | 11 28 | [2,3,7] | 42 48 | [7,11] | 77
. 9 | [13] | 13 29 | [43] | 43 49 | [2,3,13] | 78
. 10 | [2,7] | 14 30 | [2,23] | 46 50 | [79] | 79
. 11 | [3,5] | 15 31 | [47] | 47 51 | [2,41] | 82
. 12 | [17] | 17 32 | [3,17] | 51 52 | [83] | 83
. 13 | [19] | 19 33 | [53] | 53 53 | [5,17] | 85
. 14 | [3,7] | 21 34 | [5,11] | 55 54 | [2,43] | 86
. 15 | [2,11] | 22 35 | [3,19] | 57 55 | [3,29] | 87
. 16 | [23] | 23 36 | [2,29] | 58 56 | [89] | 89
. 17 | [2,13] | 26 37 | [59] | 59 57 | [7,13] | 91
. 18 | [29] | 29 38 | [61] | 61 58 | [3,31] | 93
. 19 | [2,3,5] | 30 39 | [2,31] | 62 59 | [2,47] | 94
. 20 | [31] | 31 40 | [5,13] | 65 60 | [5,19] | 95 .
-
import Math.NumberTheory.Primes.Factorisation (factorise)
import Data.Maybe (mapMaybe)
a265668 n k = a265668_tabf !! (n-1) !! (k-1)
a265668_row n = a265668_tabf !! (n-1)
a265668_tabf = [1] : mapMaybe f [2..] where
f x = if all (== 1) es then Just ps else Nothing
where (ps, es) = unzip $ factorise x
-
FactorInteger[#][[All,1]]&/@Select[Range[100],SquareFreeQ]//Flatten (* Harvey P. Dale, Apr 27 2018 *)
A374456
The Euler phi function values of the exponentially odd numbers (A268335).
Original entry on oeis.org
1, 1, 2, 4, 2, 6, 4, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 8, 12, 18, 28, 8, 30, 16, 20, 16, 24, 36, 18, 24, 16, 40, 12, 42, 22, 46, 32, 52, 18, 40, 24, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 40, 88, 72, 60, 46, 72, 32, 96
Offset: 1
-
f[p_, e_] := If[OddQ[e], (p-1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
-
s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]-1) * f[i, 1]^(f[i, 2] - 1), 0));}
lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}
A379715
The second Jordan totient function applied to the squarefree numbers.
Original entry on oeis.org
1, 3, 8, 24, 24, 48, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 504, 840, 576, 960, 960, 864, 1152, 1368, 1080, 1344, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 2880, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224, 3456, 5040, 5328, 4104, 5760, 4032
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Mohammadreza Esfandiari, On the Means of Jordan's Totient Function, Bull. Iran. Math. Soc., Vol. 46 (2020), pp. 1753-1765.
- R. Sitaramachandrarao, On an error term of Landau - II, Rocky Mountain J. Math., Vol. 15, No. 2 (1985), pp. 579-588. See p. 581.
-
f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; j2 /@ Select[Range[100], SquareFreeQ]
-
j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
list(lim) = apply(j2, select(issquarefree, vector(lim, i, i)));
A049225
Values of totient function applied to squarefree numbers; or numbers of form Product (p_i-1) where p_i are distinct primes.
Original entry on oeis.org
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 112, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
Offset: 1
8, 120, 48 are terms as totients of the squarefree numbers 15, 143, 210.
54, 110 are not terms since there are no squarefree numbers k such that phi(k) = 54, 110.
Terms of
A049200 after ordering and omitting multiple occurrences.
A358039
a(n) is the Euler totient function phi applied to the n-th cubefree number.
Original entry on oeis.org
1, 1, 2, 2, 4, 2, 6, 6, 4, 10, 4, 12, 6, 8, 16, 6, 18, 8, 12, 10, 22, 20, 12, 12, 28, 8, 30, 20, 16, 24, 12, 36, 18, 24, 40, 12, 42, 20, 24, 22, 46, 42, 20, 32, 24, 52, 40, 36, 28, 58, 16, 60, 30, 36, 48, 20, 66, 32, 44, 24, 70, 72, 36, 40, 36, 60, 24, 78, 40
Offset: 1
-
EulerPhi[Select[Range[100], Max[FactorInteger[#][[;; , 2]]] < 3 &]]
-
from sympy import mobius, integer_nthroot, totient
def A358039(n):
def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return totient(m) # Chai Wah Wu, Aug 06 2024
Showing 1-5 of 5 results.
Comments