cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A265668 Table read by rows: prime factors of squarefree numbers; a(1) = 1 by convention.

Original entry on oeis.org

1, 2, 3, 5, 2, 3, 7, 2, 5, 11, 13, 2, 7, 3, 5, 17, 19, 3, 7, 2, 11, 23, 2, 13, 29, 2, 3, 5, 31, 3, 11, 2, 17, 5, 7, 37, 2, 19, 3, 13, 41, 2, 3, 7, 43, 2, 23, 47, 3, 17, 53, 5, 11, 3, 19, 2, 29, 59, 61, 2, 31, 5, 13, 2, 3, 11, 67, 3, 23, 2, 5, 7, 71, 73, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 13 2015

Keywords

Comments

For n > 1: A072047(n) = length of row n;
T(n,1) = A073481(n); T(n,A001221(n)) = A073482(n);
for n > 1: A111060(n) = sum of row n;
A005117(n) = product of row n.

Examples

			.   n | T(n,*)  A5117(n)    n | T(n,*)  A5117(n)    n | T(n,*)   A5117(n)
. ----+---------+------   ----+---------+------   ----+----------+------
.   1 | [1]     |  1       21 | [3,11]  | 33       41 | [2,3,11] | 66
.   2 | [2]     |  2       22 | [2,17]  | 34       42 | [67]     | 67
.   3 | [3]     |  3       23 | [5,7]   | 35       43 | [3,23]   | 69
.   4 | [5]     |  5       24 | [37]    | 37       44 | [2,5,7]  | 70
.   5 | [2,3]   |  6       25 | [2,19]  | 38       45 | [71]     | 71
.   6 | [7]     |  7       26 | [3,13]  | 39       46 | [73]     | 73
.   7 | [2,5]   | 10       27 | [41]    | 41       47 | [2,37]   | 74
.   8 | [11]    | 11       28 | [2,3,7] | 42       48 | [7,11]   | 77
.   9 | [13]    | 13       29 | [43]    | 43       49 | [2,3,13] | 78
.  10 | [2,7]   | 14       30 | [2,23]  | 46       50 | [79]     | 79
.  11 | [3,5]   | 15       31 | [47]    | 47       51 | [2,41]   | 82
.  12 | [17]    | 17       32 | [3,17]  | 51       52 | [83]     | 83
.  13 | [19]    | 19       33 | [53]    | 53       53 | [5,17]   | 85
.  14 | [3,7]   | 21       34 | [5,11]  | 55       54 | [2,43]   | 86
.  15 | [2,11]  | 22       35 | [3,19]  | 57       55 | [3,29]   | 87
.  16 | [23]    | 23       36 | [2,29]  | 58       56 | [89]     | 89
.  17 | [2,13]  | 26       37 | [59]    | 59       57 | [7,13]   | 91
.  18 | [29]    | 29       38 | [61]    | 61       58 | [3,31]   | 93
.  19 | [2,3,5] | 30       39 | [2,31]  | 62       59 | [2,47]   | 94
.  20 | [31]    | 31       40 | [5,13]  | 65       60 | [5,19]   | 95  .
		

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    import Data.Maybe (mapMaybe)
    a265668 n k = a265668_tabf !! (n-1) !! (k-1)
    a265668_row n = a265668_tabf !! (n-1)
    a265668_tabf = [1] : mapMaybe f [2..] where
       f x = if all (== 1) es then Just ps else Nothing
             where (ps, es) = unzip $ factorise x
  • Mathematica
    FactorInteger[#][[All,1]]&/@Select[Range[100],SquareFreeQ]//Flatten (* Harvey P. Dale, Apr 27 2018 *)

A374456 The Euler phi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 4, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 8, 12, 18, 28, 8, 30, 16, 20, 16, 24, 36, 18, 24, 16, 40, 12, 42, 22, 46, 32, 52, 18, 40, 24, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 40, 88, 72, 60, 46, 72, 32, 96
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to phi: A002618, A049200, A323333, A358039.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374457.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p-1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]-1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A000010(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A307868 / A065463^2 = 0.95051132596733153581... .

A379715 The second Jordan totient function applied to the squarefree numbers.

Original entry on oeis.org

1, 3, 8, 24, 24, 48, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 504, 840, 576, 960, 960, 864, 1152, 1368, 1080, 1344, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 2880, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224, 3456, 5040, 5328, 4104, 5760, 4032
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2024

Keywords

Crossrefs

Cf. A005117, A007434, A013661, A049200 (analogous with J_1 = phi), A330523, A379716, A379717, A379718.

Programs

  • Mathematica
    f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; j2 /@ Select[Range[100], SquareFreeQ]
  • PARI
    j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
    list(lim) = apply(j2, select(issquarefree, vector(lim, i, i)));

Formula

a(n) = A007434(A005117(n)).
Sum_{n>=1} 1/a(n) = zeta(2) (A013661) (Sitaramachandrarao, 1985).
In general, Sum_{m squarefree} 1/J_k(m) = zeta(k), for k >= 2, where J_k is the k-th Jordan totient function.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2)^3 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A013661^3 * A330523 = 2.38520727393117206135... . - Amiram Eldar, Jan 03 2025

A049225 Values of totient function applied to squarefree numbers; or numbers of form Product (p_i-1) where p_i are distinct primes.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 112, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
Offset: 1

Views

Author

Keywords

Comments

Numbers m such that m = phi(k) and |mu(k)| = 1.

Examples

			8, 120, 48 are terms as totients of the squarefree numbers 15, 143, 210.
54, 110 are not terms since there are no squarefree numbers k such that phi(k) = 54, 110.
		

Crossrefs

Terms of A049200 after ordering and omitting multiple occurrences.

Programs

  • PARI
    isok(n) = {my(v = invphi(n)); (#v) && (#select(x->issquarefree(x), v));} \\ Michel Marcus, Feb 25 2019

A358039 a(n) is the Euler totient function phi applied to the n-th cubefree number.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 6, 4, 10, 4, 12, 6, 8, 16, 6, 18, 8, 12, 10, 22, 20, 12, 12, 28, 8, 30, 20, 16, 24, 12, 36, 18, 24, 40, 12, 42, 20, 24, 22, 46, 42, 20, 32, 24, 52, 40, 36, 28, 58, 16, 60, 30, 36, 48, 20, 66, 32, 44, 24, 70, 72, 36, 40, 36, 60, 24, 78, 40
Offset: 1

Views

Author

Amiram Eldar, Oct 29 2022

Keywords

Comments

The analogous sequence with squarefree numbers is A049200.

Crossrefs

Programs

  • Mathematica
    EulerPhi[Select[Range[100], Max[FactorInteger[#][[;; , 2]]] < 3 &]]
  • Python
    from sympy import mobius, integer_nthroot, totient
    def A358039(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return totient(m) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A000010(A004709(n)).
Sum_{k=1..n} a(k) = (c/(2*zeta(3)))*n^2 + O(n^(3/2+eps)), where c = Product_{p prime} (1 - (p+1)/(p^3+p^2+1)) = 0.62583324412633345811... (Weiyi, 2004).
From Amiram Eldar, Oct 09 2023: (Start)
Sum_{n>=1} 1/(A004709(n)*a(n)) = Product_{p prime} (1 + (p^2+1)/((p-1)*p^3)) = 2.14437852780769816048... .
Sum_{n>=1} 1/a(n)^2 = Product_{p prime} (1 + (p^2+1)/((p-1)^2*p^2)) = 3.26032746607943673536... . (End)
Showing 1-5 of 5 results.