cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049312 Number of graphs with a distinguished bipartite block, by number of vertices.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 94, 258, 815, 3038, 13804, 78760, 580456, 5647602, 73645352, 1297920850, 31031370360, 1007551636038, 44432872400460, 2661065508648436, 216457998880015366, 23920728651724212120, 3593384834863975164882, 734240676501745813835934
Offset: 0

Views

Author

Keywords

Comments

Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, apply EULER transform.
Inverse Euler transform is A318870.

Examples

			a(2)=4: null graph with 0, 1 or 2 vertices in the distinguished block and complete graph with 1 vertex in distinguished block.
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums of A028657.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
          coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
          i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
          i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
          i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (n, k)-> g(min(n, k), abs(n-k)):
    a:= d-> add(A(n, d-n), n=0..d):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten @ Table[ Map[ Function[ {p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n-k]];
    a[d_] := Sum[A[n, d-n], {n, 0, d}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

a(n) ~ 1/n! A047863(n) = 1/n! Sum_{k=0..n} binomial(n,k) * 2^(k(n-k)) (see Wright; see also Thm. 3.7 of the Troyka link, which cites Wright). - Justin M. Troyka, Oct 29 2018

Extensions

More terms from Vladeta Jovovic, Jun 17 2000