A049332 Number of conjugacy classes in Clifford group CL(n).
2, 4, 5, 10, 17, 34, 65, 130, 257, 514, 1025, 2050, 4097, 8194, 16385, 32770, 65537, 131074, 262145, 524290, 1048577, 2097154, 4194305, 8388610, 16777217, 33554434, 67108865, 134217730, 268435457, 536870914, 1073741825, 2147483650
Offset: 0
References
- B. Simon, Representations of Finite and Compact Groups, Amer. Math. Soc., 1996, p. 69.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
Programs
-
Magma
[(3/2-(-1)^n/2+2^n): n in [0..40]]; // Vincenzo Librandi, Apr 27 2012
-
Maple
A049332 := proc(n) if n mod 2 = 0 then 2^n+1 else 2^n+2; fi; end;
-
Mathematica
CoefficientList[Series[(2-5*x^2)/((1-x)*(1+x)*(1-2*x)),{x,0,40}],x] (* Vincenzo Librandi, Apr 27 2012 *) Table[2^n + Mod[n, 2] + 1, {n, 0, 31}] (* Jean-François Alcover, Feb 11 2014 *) LinearRecurrence[{2,1,-2},{2,4,5},40] (* Harvey P. Dale, Nov 29 2014 *)
-
PARI
a(n) = 3/2 - (-1)^n/2 + 2^n \\ Charles R Greathouse IV, Feb 10 2017
Formula
a(n+2) - A101622(n+1) = 4. - Creighton Dement, Mar 07 2005
From Colin Barker, Apr 18 2012: (Start)
a(n) = (3/2 - (-1)^n/2 + 2^n).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
G.f.: (2-5*x^2)/((1-x)*(1+x)*(1-2*x)). (End)
E.g.f.: cosh(x) + cosh(2*x) + 2*sinh(x) + sinh(2*x). - Stefano Spezia, May 27 2022
Comments