A049343 Numbers m such that 2m and m^2 have same digit sum.
0, 2, 9, 11, 18, 20, 29, 38, 45, 47, 90, 99, 101, 110, 119, 144, 146, 180, 182, 189, 198, 200, 245, 290, 299, 335, 344, 351, 362, 369, 380, 398, 450, 452, 459, 461, 468, 470, 479, 488, 495, 497, 639, 729, 794, 839, 848, 900, 929, 954, 990, 999
Offset: 1
References
- Problem 117 in Loren Larson's translation of Paul Vaderlind's book.
Links
- Reinhard Zumkeller and Harvey P. Dale, Table of n, a(n) for n = 1..1000 (first 101 terms from Zumkeller)
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) import Data.Function (on) a049343 n = a049343_list !! (n-1) a049343_list = elemIndices 0 $ zipWith ((-) `on` a007953) a005843_list a000290_list -- Reinhard Zumkeller, Apr 03 2011
-
Magma
[n: n in [0..1000] | &+Intseq(2*n) eq &+Intseq(n^2)]; // Vincenzo Librandi, Nov 17 2015
-
Mathematica
Select[Range[0, 1000], Sum[DigitCount[2# ][[i]]*i, {i, 1, 9}] == Sum[DigitCount[ #^2][[i]]*i, {i, 1, 9}] &] (* Stefan Steinerberger, Mar 31 2006 *) Select[Range[0,1000],Total[IntegerDigits[2#]]==Total[ IntegerDigits[ #^2]]&] (* Harvey P. Dale, Sep 25 2012 *)
Comments