cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049343 Numbers m such that 2m and m^2 have same digit sum.

Original entry on oeis.org

0, 2, 9, 11, 18, 20, 29, 38, 45, 47, 90, 99, 101, 110, 119, 144, 146, 180, 182, 189, 198, 200, 245, 290, 299, 335, 344, 351, 362, 369, 380, 398, 450, 452, 459, 461, 468, 470, 479, 488, 495, 497, 639, 729, 794, 839, 848, 900, 929, 954, 990, 999
Offset: 1

Views

Author

Keywords

Comments

An easy way to prove that this sequence is infinite is to observe that it contains all numbers of the form 10^k+1. - Stefan Steinerberger, Mar 31 2006
For n>0: digital root (A010888) of 2n or n^2 is either 4 or 9. - Reinhard Zumkeller, Oct 01 2007

References

  • Problem 117 in Loren Larson's translation of Paul Vaderlind's book.

Crossrefs

Cf. A058369, A077436 (binary). - Reinhard Zumkeller, Apr 03 2011

Programs

  • Haskell
    import Data.List (elemIndices)
    import Data.Function (on)
    a049343 n = a049343_list !! (n-1)
    a049343_list = elemIndices 0
       $ zipWith ((-) `on` a007953) a005843_list a000290_list
    -- Reinhard Zumkeller, Apr 03 2011
    
  • Magma
    [n: n in [0..1000] | &+Intseq(2*n) eq &+Intseq(n^2)]; // Vincenzo Librandi, Nov 17 2015
  • Mathematica
    Select[Range[0, 1000], Sum[DigitCount[2# ][[i]]*i, {i, 1, 9}] == Sum[DigitCount[ #^2][[i]]*i, {i, 1, 9}] &] (* Stefan Steinerberger, Mar 31 2006 *)
    Select[Range[0,1000],Total[IntegerDigits[2#]]==Total[ IntegerDigits[ #^2]]&] (* Harvey P. Dale, Sep 25 2012 *)

Formula

A007953(A005843(a(n))) = A007953(A000290(a(n))). - Reinhard Zumkeller, Oct 01 2007