A049417 a(n) = isigma(n): sum of infinitary divisors of n.
1, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 60, 26, 42, 40, 40, 30, 72, 32, 51, 48, 54, 48, 50, 38, 60, 56, 90, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 80, 85, 84, 144, 68, 90
Offset: 1
Examples
If n = 8: 8 = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8; so a(8) = 1+2+4+8 = 15. n = 90 = 2*5*9, where 2, 5, 9 are in A050376; so a(n) = 3*6*10 = 180. - _Vladimir Shevelev_, Feb 19 2011
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..7417 from R. J. Mathar)
- Graeme L. Cohen, On an integer's infinitary divisors, Math. Comp. 54 (189) (1990) 395-411.
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, pp. 49-56.
- J. O. M. Pedersen, Tables of Aliquot Cycles.
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
- Tomohiro Yamada, Infinitary superperfect numbers, Annales Mathematicae et Informaticae, Vol. 47 (2017), pp. 211-218; arXiv preprint, arXiv:1705.10933 [math.NT], 2017.
Crossrefs
Programs
-
Haskell
a049417 1 = 1 a049417 n = product $ zipWith f (a027748_row n) (a124010_row n) where f p e = product $ zipWith div (map (subtract 1 . (p ^)) $ zipWith (*) a000079_list $ map (+ 1) $ a030308_row e) (map (subtract 1 . (p ^)) a000079_list) -- Reinhard Zumkeller, Sep 18 2015
-
Maple
isidiv := proc(d, n) local n2, d2, p, j; if n mod d <> 0 then return false; end if; for p in numtheory[factorset](n) do padic[ordp](n,p) ; n2 := convert(%, base, 2) ; padic[ordp](d,p) ; d2 := convert(%, base, 2) ; for j from 1 to nops(d2) do if op(j, n2) = 0 and op(j, d2) <> 0 then return false; end if; end do: end do; return true; end proc: idivisors := proc(n) local a, d; a := {} ; for d in numtheory[divisors](n) do if isidiv(d, n) then a := a union {d} ; end if; end do: a ; end proc: A049417 := proc(n) local d; add(d, d=idivisors(n)) ; end proc: seq(A049417(n),n=1..100) ; # R. J. Mathar, Feb 19 2011
-
Mathematica
bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]; Table[Plus@@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@ Flatten[Outer[z, Sequence @@ bitty /@ Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 120}] (* Second program: *) a[n_] := If[n == 1, 1, Sort @ Flatten @ Outer[ Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] // Total; Array[a, 100] (* Jean-François Alcover, Mar 23 2020, after Paul Abbott in A077609 *)
-
PARI
A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[,2], b = binary(f[k,2]); prod(j=1, #b, if(b[j], 1+f[k,1]^(2^(#b-j)), 1)))} \\ Andrew Lelechenko, Apr 22 2014
-
PARI
isigma(n)=vecprod([vecprod([f[1]^2^k+1|k<-[0..exponent(f[2])], bittest(f[2],k)])|f<-factor(n)~]) \\ M. F. Hasler, Oct 20 2022
-
Python
from math import prod from sympy import factorint def A049417(n): return prod(p**(1<Chai Wah Wu, Jul 11 2024
Formula
Multiplicative: If e = Sum_{k >= 0} d_k 2^k (binary representation of e), then a(p^e) = Product_{k >= 0} (p^(2^k*{d_k+1}) - 1)/(p^(2^k) - 1). - Christian G. Bower and Mitch Harris, May 20 2005 [This means there is a factor p^2^k + 1 if d_k = 1, otherwise the factor is 1. - M. F. Hasler, Oct 20 2022]
Let n = Product(q_i) where {q_i} is a set of distinct terms of A050376. Then a(n) = Product(q_i + 1). - Vladimir Shevelev, Feb 19 2011
If n is squarefree, then a(n) = A001615(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{k>=1} A077609(n,k). - R. J. Mathar, Oct 04 2017
a(n) = A126168(n)+n. - R. J. Mathar, Oct 05 2017
Multiplicative with a(p^e) = Product{k >= 0, e_k = 1} p^2^k + 1, where e = Sum e_k 2^k, i.e., e_k is bit k of e. - M. F. Hasler, Oct 20 2022
a(n) = iphi(n^2)/iphi(n), where iphi(n) = A091732(n). - Amiram Eldar, Sep 21 2024
Extensions
More terms from Wouter Meeussen, Sep 02 2001
Comments