cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001954 a(n) = floor((n+1/2)*(2+sqrt(2))); winning positions in the 2-Wythoff game.

Original entry on oeis.org

1, 5, 8, 11, 15, 18, 22, 25, 29, 32, 35, 39, 42, 46, 49, 52, 56, 59, 63, 66, 69, 73, 76, 80, 83, 87, 90, 93, 97, 100, 104, 107, 110, 114, 117, 121, 124, 128, 131, 134, 138, 141, 145, 148, 151, 155, 158, 162, 165, 169, 172, 175, 179, 182, 186, 189, 192, 196, 199
Offset: 0

Views

Author

Keywords

Comments

Winning positions in the 2-Wythoff game, the u-pile in Connell's nomenclature; v-pile numbers in A001953.
Let s(n) = zeta(3) - Sum_{k=1..n} 1/k^3. Conjecture: for n >=1, s(a(n)) < 1/n^2 < s(a(n)-1), and the difference sequence of A049473 consists solely of 0's and 1, in positions given by the nonhomogeneous Beatty sequences A001954 and A001953, respectively. - Clark Kimberling, Oct 05 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A001953. Bisection of A003152.

Programs

  • Magma
    [Floor((2+Sqrt(2))*(2*n+1)/2): n in [0..70]]; // G. C. Greubel, Dec 20 2019
    
  • Maple
    seq( floor((2+sqrt(2))*(2*n+1)/2), n=0..70); # G. C. Greubel, Dec 20 2019
  • Mathematica
    Table[Floor[(n + 1/2) (2 + Sqrt[2])], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)
    Complement[Range[300], Table[Floor[Sqrt[2*n*(n + 1)]], {n, 0, 300}]] (* Ralf Steiner, Oct 27 2019 *)
  • PARI
    a(n)=floor((n+1/2)*(2+sqrt(2)))
    
  • Sage
    [floor((2+sqrt(2))*(2*n+1)/2) for n in (0..70)] # G. C. Greubel, Dec 20 2019

Formula

a(n + 1) - a(n) is either 3 or 4. Note the comment regarding some intervals in the complement (A001953). - Ralf Steiner, Oct 27 2019

Extensions

More terms from Michael Somos, Apr 26 2000
New name from Hugo Pfoertner, Dec 27 2021

A001953 a(n) = floor((n + 1/2) * sqrt(2)).

Original entry on oeis.org

0, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 53, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95
Offset: 0

Views

Author

Keywords

Comments

Let s(n) = zeta(3) - Sum_{k = 1..n} 1/k^3. Conjecture: for n >= 1, s(a(n)) < 1/n^2 < s(a(n)-1), and the difference sequence of A049473 consists solely of 0's and 1's, in positions given by the nonhomogeneous Beatty sequences A001954 and A001953, respectively. - Clark Kimberling, Oct 05 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A001954.

Programs

  • Magma
    [Floor((2*n+1)/Sqrt(2)): n in [0..100]]; // G. C. Greubel, Nov 14 2019
    
  • Maple
    seq( floor((2*n+1)/sqrt(2)), n=0..100); # G. C. Greubel, Nov 14 2019
  • Mathematica
    Table[Floor[(n + 1/2) Sqrt[2]], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)
  • PARI
    a(n)=floor((n+1/2)*sqrt(2))
    
  • PARI
    a(n)={sqrtint(2*n*(n+1))} \\ Andrew Howroyd, Oct 24 2019
    
  • Sage
    [floor((2*n+1)/sqrt(2)) for n in (0..100)] # G. C. Greubel, Nov 14 2019

Formula

From Ralf Steiner, Oct 23 2019: (Start)
a(n) = floor(2*sqrt(A000217(n))).
a(n) = A136119(n + 1) - 1.
a(n + 1) - a(n) is in {1,2}.
a(n + 3) - a(n) is in {4,5}. (End)

Extensions

More terms from Michael Somos, Apr 26 2000.

A104521 Fixed point of the morphism 0->{1}, 1->{1,0,1}.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0
Offset: 0

Views

Author

Joerg Arndt, Apr 20 2005

Keywords

Comments

A080764 and this sequence contain (arbitrarily?) long common substrings.
Yes, A080764 and this sequence contain arbitrarily long common substrings, since the morphism 0 -> 1, 1 -> 110 of A080764 and the morphism 0 -> 1, 1 -> 101 generate the same language: the second morphism is a rotation of the first (so they are conjugate to each other). - Michel Dekking, Feb 03 2017
Zak Seidov points out (Mar 17 2006) that essentially the same sequence arises from the following process: Start with {0,1}; between each pair of digits, insert their sum written in binary. We get successively:
{0,1,1}
{0,1,1,1,0,1}
{0,1,1,1,0,1,1,0,1,1,0,1,1}
{0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,1}, etc.,
which is the current sequence without the initial 1.
A Sturmian word with slope sqrt(2)/2 and intercept (3-sqrt(2))/2; see formula. - Jeffrey Shallit, Mar 06 2024

Examples

			The evolution starting with 0 is:
  0
  1
  101
  1011101
  10111011011011101
  10111011011011101101110110111011011011101
		

Crossrefs

Programs

  • Mathematica
    Nest[ Flatten[ # /. {0 -> {1}, 1 -> {1, 0, 1}}] &, 0, 7] (* Robert G. Wilson v, Apr 23 2005 *)
    h[n_] := Floor[n / Sqrt[2] + 1/2]; Table[h[n + 1] - h[n], {n, 0, 104}]
    (* Peter Luschny, Mar 06 2024 *)
  • zsh
    #! /usr/bin/env zsh
    function N { local w=$1; for (( i=0; i<7; i+=1 )); do echo $w; w=$(echo $w | S); done }
    function S { sed 's/1/1_1/g; s/0/1/g; s/_/0/g;' } # 0->1, 1->101
    N "0"
    # Joerg Arndt, Apr 24 2005

Formula

a(n) = floor((n+2)a + b)-floor((n+1)a+b), where a = sqrt(2)/2, b = (3-sqrt(2))/2. - Jeffrey Shallit, Mar 06 2024
a(n) = round((n+1)/sqrt(2))-round(n/sqrt(2)). - Chai Wah Wu, Mar 07 2024

A091087 a(n) = floor(r*n) + floor(n/r), where r=sqrt(2).

Original entry on oeis.org

0, 1, 3, 6, 7, 10, 12, 13, 16, 18, 21, 22, 24, 27, 28, 31, 33, 36, 37, 39, 42, 43, 46, 48, 49, 52, 54, 57, 58, 61, 63, 64, 67, 69, 72, 73, 75, 78, 79, 82, 84, 85, 88, 90, 93, 94, 97, 99, 100, 103, 105, 108, 109, 111, 114, 115, 118, 120, 123, 124, 126, 129, 130, 133, 135
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2003

Keywords

Crossrefs

Cf. A049473.

Programs

  • Magma
    [Floor(n*Sqrt(2)) + Floor(n/Sqrt(2)): n in [0..100]]; // G. C. Greubel, Sep 27 2018
  • Mathematica
    Table[Floor[n*Sqrt[2]] + Floor[n/Sqrt[2]], {n, 0, 100}] (* G. C. Greubel, Sep 27 2018 *)
  • PARI
    vector(100, n, n--; floor(n*sqrt(2)) + floor(n/sqrt(2))) \\ G. C. Greubel, Sep 27 2018
    

A361795 a(n) is the area of the largest rectangle with integer sides that can be drawn inside a circle of diameter n.

Original entry on oeis.org

0, 0, 1, 4, 6, 12, 16, 20, 30, 36, 49, 56, 64, 81, 90, 110, 121, 144, 156, 169, 196, 210, 240, 256, 272, 306, 324, 361, 380, 420, 441, 462, 506, 529, 576, 600, 625, 676, 702, 756, 784, 812, 870, 900, 961, 992, 1056, 1089, 1122, 1190
Offset: 0

Views

Author

John Mason, Mar 24 2023

Keywords

Comments

Alternatively a(n) is the area of the largest rectangle with integer sides having a diagonal of length <= n.
a(n) = x*x or x*(x+1) for x=floor(n/sqrt(2)).

Crossrefs

Programs

  • PARI
    a(n)={my(t=sqrtint(n^2\2)); if(2*t*(t + 1) < n^2, t + 1, t)*t} \\ Andrew Howroyd, Mar 24 2023
    
  • PARI
    a(n) = sqrtint(n^2\2) * ((sqrtint(2*n^2)+1)\2) \\ Andrew Howroyd, Mar 24 2023

Formula

a(n) = A049472(n) * A049473(n). - Andrew Howroyd, Mar 24 2023
Showing 1-5 of 5 results.