A049532 Numbers k such that k^2 + 1 is not squarefree.
7, 18, 32, 38, 41, 43, 57, 68, 70, 82, 93, 99, 107, 117, 118, 132, 143, 157, 168, 182, 193, 207, 218, 232, 239, 243, 251, 257, 268, 282, 293, 307, 318, 327, 332, 343, 357, 368, 378, 382, 393, 407, 408, 418, 432, 437, 443, 457, 468, 482, 493, 500, 507, 515
Offset: 1
Keywords
Examples
a(1) = 7 because 7^2 + 1 = 49 + 1 = 50 is divisible by 25, a square.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..7999
Programs
-
Magma
[n: n in [1..6*10^2]| not IsSquarefree(n^2+1)]; // Bruno Berselli, Oct 15 2012
-
Mathematica
n=1;Reap[Do[While[SquareFreeQ[n^2+1],n++];Sow[n];n++,{c,10000}]][[2,1]] (* Zak Seidov, Feb 24 2011 *)
-
PARI
for(n=1,1e4,if(!issquarefree(n^2+1),print1(n", "))) \\ Charles R Greathouse IV, Feb 24 2011
Formula
Extensions
Definition rewritten by Bruno Berselli, Oct 15 2012
Mathematica updated by Jean-François Alcover, Jun 19 2013
Comments