cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A218709 a(n) is smallest number such that a(n)^2 + 1 is divisible by 13^n.

Original entry on oeis.org

0, 5, 70, 239, 239, 143044, 1999509, 6826318, 6826318, 822557039, 52199939826, 603633907222, 11356596271444, 11356596271444, 1828607235824962, 13920898306972194, 13920898306972194, 2675587335039691558, 49226908181248336040, 513050126578538629605
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(4) = 239 because 239^2+1 = 2*13^4.
		

Crossrefs

Programs

  • Mathematica
    b=5;n13=13;jo=Join[{0,b},Table[n13=13*n13;b=PowerMod[b,13,n13];b=Min[b,n13-b],{99}]]

A049533 Numbers k such that k^2+1 is squarefree.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Keywords

Comments

Estermann proved that a(n) ~ kn with k = 1.117...; more precisely, there are cx + O(x^(2/3) log x) terms up to x, where c = 1/k = Product (1 - 2/p^2) where the product is over primes p which are 1 mod 4. Heath-Brown improves the error term to O(x^(7/12) log x). - Charles R Greathouse IV, Oct 16 2017, corrected by Amiram Eldar, Jul 08 2020
There are 89489 terms up to 10^5, 894856 terms up to 10^6, 8948417 up to 10^7, 89484102 up to 10^8, and 894841314 up to 10^9. - Charles R Greathouse IV, Nov 26 2017, corrected and extended by Amiram Eldar, Jul 08 2020

Examples

			10 is a member because 10^2 + 1 = 100 + 1 = 101 is squarefree.
Reasons why certain numbers are excluded: 7^2+1 = 2*5^2, 18^2+1 = 13*5^2, 32^2+1 = 41*5^2, 38^2+1 = 5*17^2, 41^2+1 = 2*29^2, 43^2+1 = 74*5^2, 57^2+1 = 130*5^2, 82^2+1 = 269*5^2. - Neven Juric, Oct 06 2008
		

Crossrefs

Complement of A049532.

Programs

  • Magma
    [ n: n in [1..100] | IsSquarefree(n^2+1) ]; // Vincenzo Librandi, Dec 25 2010
    
  • Mathematica
    Select[Range@ 80, SquareFreeQ[#^2 + 1] &] (* Michael De Vlieger, Aug 09 2017 *)
  • PARI
    isok(n) = issquarefree(n^2+1); \\ Michel Marcus, Feb 09 2016

Formula

Numbers k such that A059592(k) = 1. - Reinhard Zumkeller, Nov 08 2006

A218710 a(n) is smallest number such that a(n)^2 + 1 is divisible by 17^n.

Original entry on oeis.org

0, 4, 38, 1985, 27493, 390112, 390112, 96940388, 3379649772, 24306922095, 450044583893, 5597937117454, 28673959190179, 3524407382568745, 13428985415474682, 13428985415474682, 5711417117604156904, 91610966633729580058, 6709533061724423693474
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(4) = 27493 because 27493^2+1 =  2 * 5 ^ 2 * 17 ^ 4 * 181.
		

Crossrefs

Programs

  • Mathematica
    b=4;n17=17;jo=Join[{0,b},Table[n17=17*n17;b=PowerMod[b,17,n17];b=Min[b,n17-b],{99}]]

A218712 a(n) is the smallest number such that a(n)^2 + 1 is divisible by 29^n.

Original entry on oeis.org

0, 12, 41, 10133, 34522, 7745569, 253879357, 7986582530, 61012922706, 4563230639355, 67972499239990, 1330094199140593, 47471944863682723, 5000878909740249297, 5000878909740249297, 590115586441858677665, 77072583141941801290876, 423420364218752896284166
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(4) = 34522 because 34522^2+1 =  5 * 29 ^ 4 * 337.
		

Crossrefs

Programs

  • Maple
    R:= 0,12: U:= [12,17]:
    for n from 2 to 30 do
      qs:= map(u -> (u^2+1)/29^(n-1), U);
      ys:= [seq(-qs[i]/(2*U[i]) mod 29,i=1..2)];
      U:= U + ys*29^(n-1) mod 29^n;
      R:= R,min(U);
    od:
    R; # Robert Israel, Jan 13 2025
  • Mathematica
    b=12;n29=29;jo=Join[{0,b},Table[n29=29*n29;b=PowerMod[b,29,n29];b=Min[b,n29-b],{99}]]

A124809 Numbers of the form (square + 1) that are not squarefree.

Original entry on oeis.org

50, 325, 1025, 1445, 1682, 1850, 3250, 4625, 4901, 6725, 8650, 9802, 11450, 13690, 13925, 17425, 20450, 24650, 28225, 33125, 37250, 42850, 47525, 53825, 57122, 59050, 63002, 66050, 71825, 79525, 85850, 94250, 101125, 106930, 110225, 117650
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 08 2006

Keywords

Comments

The sequence is infinite (see comment in A049532). - Emmanuel Vantieghem, Oct 25 2016

Crossrefs

Programs

Formula

a(n) = A049532(n)^2 + 1.

A218713 a(n) is smallest number such that a(n)^2 + 1 is divisible by 37^n.

Original entry on oeis.org

0, 6, 117, 9466, 800982, 6423465, 756360062, 24900904028, 1019349744435, 15069267560119, 794839706330581, 71333925879937154, 2419512779032508628, 116073623326088126430, 359642847542169431827, 144552623583462302226851, 3523356323886506075746572
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(3) = 9466 because 9466^2+1 =  29 * 37 ^ 3 * 61.
		

Crossrefs

Programs

  • Mathematica
    b=6;n37=37;jo=Join[{0,b},Table[n37=37*n37;b=PowerMod[b,37,n37];b=Min[b,n37-b],{99}]]

A218714 a(n) is smallest number such that a(n)^2 + 1 is divisible by 41^n.

Original entry on oeis.org

0, 9, 378, 11389, 1251967, 46464143, 2363588163, 92615568742, 287369842623, 112076323050317, 2403749863808044, 56094387104417648, 1156752450536914530, 43970228150195457632, 10132163897314954464899, 503212117431217218892992, 19164391897329672149556204
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(3) = 11389 because 11389^2+1 =  2 * 41 ^ 3 * 941.
		

Crossrefs

Programs

  • Mathematica
    b=9;n41=41;jo=Join[{0,b},Table[n41=41*n41;b=PowerMod[b,41,n41];b=Min[b,n41-b],{99}]]

A218562 Numbers k such that k^2 + 1 is divisible by a cube.

Original entry on oeis.org

57, 68, 182, 193, 239, 307, 318, 432, 443, 557, 568, 682, 693, 807, 818, 932, 943, 1057, 1068, 1182, 1193, 1307, 1318, 1432, 1443, 1557, 1568, 1682, 1693, 1807, 1818, 1932, 1943, 1958, 1985, 2057, 2068, 2182, 2193, 2307, 2318, 2432, 2436, 2443, 2557, 2568
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Examples

			239 is in the sequence because 239^2 + 1 =  2 * 13 ^ 4.
1985 is in the sequence because 1985^2 + 1 = 2 * 17 ^ 3 * 401.
		

Crossrefs

Cf. A000578 (cubes).

Programs

  • Mathematica
    Select[Range[2,2600],Max[Transpose[FactorInteger[#^2+1]][[2]]]>2&]

A218715 a(n) is smallest number such that a(n)^2 + 1 is divisible by 53^n.

Original entry on oeis.org

0, 23, 500, 27590, 623098, 23048345, 5041394261, 416081467190, 11331029931180, 50928660480181, 6548598523124085, 2441875986594058601, 76594163421571591377, 7783548304686046882879, 252583670951378815076851, 4392422457122810120236558, 1165802007767335105471573954
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(3) = 27590 because 27590^2+1 =  53 ^ 3 * 5113.
		

Crossrefs

Programs

  • Mathematica
    b=23;n53=53;jo=Join[{0,b},Table[n53=53*n53;b=PowerMod[b,53,n53];b=Min[b,n53-b],{99}]]

A218563 Numbers n such that n^2 + 1 is divisible by a 4th power.

Original entry on oeis.org

182, 239, 443, 807, 1068, 1432, 1693, 2057, 2318, 2682, 2943, 3307, 3568, 3932, 4193, 4557, 4818, 5182, 5443, 5807, 6068, 6432, 6693, 7057, 7318, 7682, 7943, 8307, 8568, 8932, 9193, 9557, 9818, 10182, 10443, 10807, 11068, 11432, 11693, 12057, 12318, 12682
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Comments

Includes all n == 182 or 443 (mod 625). In particular, the sequence has positive asymptotic density. # Robert Israel, Oct 06 2016

Examples

			239 is in the sequence because 239^2+1 = 57122 = 2*13^4;
27493 is in the sequence because 27493^2+1 = 755865050 = 2*5^2*17^4*181.
		

Crossrefs

Programs

  • Maple
    N:= 100000: # to get all terms <= N
    res:= {}:
    p:= 2;
    while p^4 <= N^2+1 do
      for v in map(t -> subs(t,n), [msolve(n^2+1, p^4)]) do
        res:= res union {seq(k*p^4+v, k = 0 .. (N-v)/p^4)}
      od;
      p:= nextprime(p);
    od:
    sort(convert(res,list)); # Robert Israel, Oct 06 2016
  • Mathematica
    Select[Range[2,13000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>3&]
Showing 1-10 of 26 results. Next