cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A283710 The smallest square referenced in A124809.

Original entry on oeis.org

25, 25, 25, 289, 841, 25, 25, 25, 169, 25, 25, 169, 25, 1369, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 169, 25, 289, 25, 25, 25, 25, 25, 25, 289, 25, 25, 25, 25, 1681, 25, 25, 25, 169, 25, 25, 169, 25, 25, 25, 25, 25, 2809, 25, 10201, 25, 25, 289, 25, 25, 25
Offset: 1

Views

Author

Robert Price, Mar 14 2017

Keywords

Examples

			A124809(1)=50, 50 = 2*5*5, so 50 is not squarefree, the square being 5*5 = 25.
		

Crossrefs

A283711 Square root of the smallest square referenced in A124809 (Numbers of the form (square + 1) that are not squarefree).

Original entry on oeis.org

5, 5, 5, 17, 29, 5, 5, 5, 13, 5, 5, 13, 5, 37, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 13, 5, 17, 5, 5, 5, 5, 5, 5, 17, 5, 5, 5, 5, 41, 5, 5, 5, 13, 5, 5, 13, 5, 5, 5, 5, 5, 53, 5, 101, 5, 5, 17, 5, 5, 5, 13, 5, 5, 13, 5, 17, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 13, 5, 5
Offset: 1

Views

Author

Robert Price, Mar 14 2017

Keywords

Examples

			A124809(1)=50, 50 = 2*5*5, so 50 is not squarefree, the square being 5*5 = 25 and the root being 5.
		

Crossrefs

A049532 Numbers k such that k^2 + 1 is not squarefree.

Original entry on oeis.org

7, 18, 32, 38, 41, 43, 57, 68, 70, 82, 93, 99, 107, 117, 118, 132, 143, 157, 168, 182, 193, 207, 218, 232, 239, 243, 251, 257, 268, 282, 293, 307, 318, 327, 332, 343, 357, 368, 378, 382, 393, 407, 408, 418, 432, 437, 443, 457, 468, 482, 493, 500, 507, 515
Offset: 1

Views

Author

Keywords

Comments

The sequence is infinite. For instance, it contains all numbers of the form 7 + 25m. - Emmanuel Vantieghem, Oct 25 2016
More generally, the sequence contains all numbers of the form a(n) + (a(n)^2 + 1) * m for even a(n) and a(n) + (a(n)^2 + 1) * m / 2 for odd a(n). - David A. Corneth, Oct 25 2016
The asymptotic density of this sequence is 1 - A335963 = 0.1051587754... - Amiram Eldar, Jul 08 2020

Examples

			a(1) = 7 because 7^2 + 1 = 49 + 1 = 50 is divisible by 25, a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..6*10^2]| not IsSquarefree(n^2+1)]; // Bruno Berselli, Oct 15 2012
  • Mathematica
    n=1;Reap[Do[While[SquareFreeQ[n^2+1],n++];Sow[n];n++,{c,10000}]][[2,1]] (* Zak Seidov, Feb 24 2011 *)
  • PARI
    for(n=1,1e4,if(!issquarefree(n^2+1),print1(n", "))) \\ Charles R Greathouse IV, Feb 24 2011
    

Formula

A059592(a(n)) > 1; A124809(n) = a(n)^2 + 1. - Reinhard Zumkeller, Nov 08 2006

Extensions

Definition rewritten by Bruno Berselli, Oct 15 2012
Mathematica updated by Jean-François Alcover, Jun 19 2013

A069987 Squarefree numbers of form k^2 + 1.

Original entry on oeis.org

2, 5, 10, 17, 26, 37, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1090, 1157, 1226, 1297, 1370, 1522, 1601, 1765, 1937, 2026, 2117, 2210, 2305, 2402, 2501, 2602, 2705, 2810, 2917, 3026
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 01 2002

Keywords

Comments

Heath-Brown (following Estermann) shows that, for any e > 0, there are k sqrt(x) + O(x^{7/24 + e}) members of this sequence up to x, for k = Product(1 - 2/p^2) = 0.8948412245... (A335963) where the product is over primes p = 1 mod 4. - Charles R Greathouse IV, Nov 19 2012, corrected by Amiram Eldar, Jul 08 2020
Integers k for which the period of the continued fraction of sqrt(k) is 1. - Michel Marcus, Apr 12 2019

Crossrefs

Programs

  • Maple
    select(numtheory:-issqrfree, [seq(n^2+1, n=1..100)]); # Robert Israel, Feb 09 2016
  • Mathematica
    Select[ Range[10^4], IntegerQ[ Sqrt[ # - 1]] && Union[ Transpose[ FactorInteger[ # ]] [[2]]] [[ -1]] == 1 &]
    Select[Range[60]^2+1,SquareFreeQ] (* Harvey P. Dale, Mar 21 2013 *)
  • PARI
    for(n=1,100,if(issquarefree(n^2+1),print1(n^2+1,",")))

Formula

a(n) = A049533(n)^2 + 1.

Extensions

Edited and extended by Robert G. Wilson v, Benoit Cloitre and Vladeta Jovovic, May 04 2002

A134420 Composite squarefree numbers of the form k^2 + 1.

Original entry on oeis.org

10, 26, 65, 82, 122, 145, 170, 226, 290, 362, 442, 485, 530, 626, 730, 785, 842, 901, 962, 1090, 1157, 1226, 1370, 1522, 1765, 1937, 2026, 2117, 2210, 2305, 2402, 2501, 2602, 2705, 2810, 3026, 3365, 3482, 3601, 3722, 3845, 3970, 4097, 4226, 4490, 4762
Offset: 1

Views

Author

Jani Melik, Jan 18 2008

Keywords

Comments

Square roots of these numbers are quadratic irrationals and corresponding chain fraction representations are periodic: sqrt(10) = [3;{2,3}], sqrt(26) = [5;{2,5}], sqrt(65) = [8;{2,8}], ..., where {} is denoted a period (we write {6} == {2,3}).

Examples

			a(1)=10 because 10 = 3^2 + 1 is squarefree.
a(2)=26 because 26 = 5^2 + 1 is squarefree.
a(3)=65 because 65 = 8^2 + 1 is squarefree.
		

Crossrefs

Programs

  • Maple
    ts_fn3:=proc(n) local i,tren,ans; ans:=[ ]: for i from 1 to n do tren := i^(2)+1: if (isprime(tren) = false and numtheory[mobius] (tren) <> 0 ) then ans:=[ op(ans), tren ]: fi od: RETURN(ans) end: ts_fn3(200);
  • Mathematica
    Select[Range[70]^2+1, CompositeQ[#] && SquareFreeQ[#] &] (* Amiram Eldar, Feb 22 2021 *)

Formula

a(n) = A002522(A134427(n)). - Amiram Eldar, Feb 22 2021

Extensions

Definition corrected by T. D. Noe, Sep 16 2008

A134427 Numbers k such that k^2 + 1 is a composite squarefree number.

Original entry on oeis.org

3, 5, 8, 9, 11, 12, 13, 15, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 33, 34, 35, 37, 39, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 83, 85, 86, 87, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101
Offset: 1

Views

Author

Jani Melik, Jan 18 2008

Keywords

Examples

			a(1)=3, because 3^2 + 1 = 10 is composite squarefree.
a(2)=5, because 5^2 + 1 = 26 is composite squarefree.
a(3)=8, because 8^2 + 1 = 50 is composite squarefree.
		

Crossrefs

Programs

  • Maple
    ts_fn4:=proc(n) local i,tren,ans; ans:=[ ]: for i from 1 to n do tren := i^(2)+1: if (isprime(tren) = false and numtheory[mobius] (tren) <> 0 ) then ans:=[ op(ans), i ]: fi od: RETURN(ans) end: ts_fn4(200);
  • Mathematica
    Select[Range[100], CompositeQ[#^2+1] && SquareFreeQ[#^2+1] &] (* Amiram Eldar, Feb 22 2021 *)

Extensions

Definition corrected by T. D. Noe, Sep 16 2008

A282092 Numbers m such that there exists at least one integer k < m such that m^2+1 and k^2+1 have the same prime factors.

Original entry on oeis.org

7, 18, 117, 239, 378, 843, 2207, 2943, 4443, 4662, 6072, 8307, 8708, 9872, 31561, 103682, 271443, 853932, 1021693, 3539232, 3699356, 6349657, 6907607, 7042807, 7249325, 9335094, 12623932, 12752043, 12813848, 22211431, 33385282, 42483057, 52374157, 105026693
Offset: 1

Views

Author

Michel Lagneau, Feb 06 2017

Keywords

Comments

For the pairs (m, k), is k always unique?
The pairs (m, k) are (7, 3), (18, 8), (117, 43), (239, 5), (378, 132), (843, 377), (2207, 987), (2943, 73), (4443, 53), (4662, 1568), (6072, 5118), (8307, 743), (8708, 2112), (9872, 2738), ...

Examples

			7 is in the sequence because of the pair (m, k) = (7, 3), 7^2+1 = 2*5^2 and 3^2+1 = 2*5 with the same prime factors 2 and 5.
		

Crossrefs

Subsequence of A049532 (numbers n such that n^2 + 1 is not squarefree).

Programs

  • Mathematica
    Select[Range@ 5000, Function[m, Total@ Boole@ Table[Function[w, And[SameQ[First@ w, #], SameQ[Last@ w, #]] &@ Union@ Flatten@ w]@ Map[FactorInteger[#][[All, 1]] &, {m^2 + 1, k^2 + 1}], {k, m - 1}] > 0]] (* Michael De Vlieger, Feb 07 2017 *)
  • PARI
    isok(n)=ok = 0; vn = factor(n^2+1)[,1]; for (k=1, n-1, if (factor(k^2+1)[,1] == vn, ok = 1; break);); ok; \\ Michel Marcus, Feb 09 2017
    
  • PARI
    squeeze(f)=factorback(f)\2
    list(lim)=my(v=List(),m=Map(),t); for(n=1,lim, t=squeeze(factor(n^2+1)[,1]); if(mapisdefined(m,t), listput(v,n), mapput(m,t,0))); Vec(v) \\ Charles R Greathouse IV, Feb 12 2017
  • Perl
    use ntheory qw(:all);
    for (my ($m, %t) = 1 ; ; ++$m) {
    my $k = vecprod(map{$_->[0]}factor_exp($m**2+1));
    push @{$t{$k}}, $m;
    if (@{$t{$k}} >= 2) {
    print'('.join(', ',reverse(@{$t{$k}})).")\n";
    }
    } # Daniel Suteu, Feb 08 2017
    

Extensions

a(15)-a(29) from Daniel Suteu, Feb 08 2017
a(30) from Daniel Suteu, Feb 10 2017
a(31)-a(34) from Joerg Arndt, Feb 11 2017
Showing 1-7 of 7 results.