A036691 Compositorial numbers: product of first n composite numbers.
1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000, 48808684250726400000, 1366643159020339200000
Offset: 0
Examples
a(3) = c(1)*c(2)*c(3) = 4*6*8 = 192.
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Googology Wiki, Compositorial
Crossrefs
Programs
-
Haskell
a036691_list = scanl1 (*) a002808_list -- Reinhard Zumkeller, Oct 03 2011
-
Maple
A036691 := proc(n) mul(A002808(i),i=1..n) ; end proc: # R. J. Mathar, Oct 03 2011
-
Mathematica
Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; Table[ Product[ Composite[i], {i, 1, n}], {n, 0, 18}] (* Robert G. Wilson v, Sep 13 2003 *) nn=50;cnos=Complement[Range[nn],Prime[Range[PrimePi[nn]]]];Rest[FoldList[ Times,1,cnos]] (* Harvey P. Dale, May 19 2011 *) A036691 = Union[Table[n!/(Times@@Prime[Range[PrimePi[n]]]), {n, 29}]] (* Alonso del Arte, Sep 21 2011 *) Join[{1},FoldList[Times,Select[Range[30],CompositeQ]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 14 2019 *)
-
PARI
a(n)=my(c,p);c=4;p=1;while(n>0,if(!isprime(c),p=p*c;n=n-1);c=c+1);p \\ Ralf Stephan, Dec 21 2013
-
Python
from sympy import factorial, primepi, primorial, composite def A036691(n): return factorial(composite(n))//primorial(primepi(composite(n))) if n > 0 else 1 # Chai Wah Wu, Sep 08 2020
Formula
From Chayim Lowen, Jul 23 - Aug 05 2015: (Start)
Sum_{k >= 1} 1/a(k) = 1.2975167655550616507663335821769... is to this sequence as e is to the factorials. (End)
Extensions
Corrected and extended by Niklas Eriksen (f95-ner(AT)nada.kth.se) and N. J. A. Sloane
Comments