A049670 a(n) = Fibonacci(10*n)/55.
0, 1, 123, 15128, 1860621, 228841255, 28145613744, 3461681649257, 425758697244867, 52364858079469384, 6440451785077489365, 792123204706451722511, 97424713727108484379488, 11982447665229637126954513, 1473743638109518258131025611, 181258485039805516112989195640
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..383
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (123,-1).
Programs
-
Magma
[ Fibonacci(10*n)/55: n in [0..30]]; // G. C. Greubel, Dec 02 2017
-
Maple
seq(combinat:-fibonacci(10*n)/55, n=0..20); # Robert Israel, Apr 03 2015
-
Mathematica
Table[Fibonacci[10 n]/55, {n, 12}] (* Michael De Vlieger, Apr 03 2015 *) LinearRecurrence[{123,-1},{0,1},20] (* Harvey P. Dale, Dec 03 2019 *)
-
MuPAD
numlib::fibonacci(10*n)/55 $ n = 0..25; // Zerinvary Lajos, May 09 2008
-
PARI
a(n)=fibonacci(10*n)/55 \\ Charles R Greathouse IV, Oct 07 2016
Formula
G.f.: x/(1-123*x+x^2), 123=L(10)=A000032(10) (Lucas).
a(n+1) = S(n, 123) = U(n, 123/2) = S(2*n+1, 5*sqrt(5))/(5*sqrt(5)), n>=0, with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 123*a(n-1) - a(n-2), n >= 2; a(0)=0, a(1)=1.
a(n) = (ap^n - am^n)/(ap-am) with ap := (123+55*sqrt(5))/2 and am := (123-55*sqrt(5))/2 = 1/ap.
From Peter Bala, Nov 29 2013: (Start)
a(n) = 1/(11*55)*(F(10*n + 5) - F(10*n - 5)).
From Peter Bala, Apr 03 2015: (Start)
For integer k, 1 + k*(22 - k)*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + k/5*Sum_{n >= 1} Fibonacci(5*n)*x^n )*( 1 + k/5*Sum_{n >= 1} Fibonacci(5*n)*(-x)^n ).
1 + 4*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n+5)*x^n )*( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n+5)*(-x)^n ) = ( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n-5)*x^n )*( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n-5)*(-x)^n ).
1 + 25*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + Sum_{n >= 1} Fibonacci(5*n+3)*x^n )*( 1 + Sum_{n >= 1} Fibonacci(5*n+3)*(-x)^n ) = ( 1 + Sum_{n >= 1} Fibonacci(5*n-3)*x^n )*( 1 + Sum_{n >= 1} Fibonacci(5*n-3)*(-x)^n ).
1 + 100*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + 2*Sum_{n >= 1} Fibonacci(5*n+1)*x^n )*( 1 + 2*Sum_{n >= 1} Fibonacci(5*n+1)*(-x)^n ) = ( 1 + 2*Sum_{n >= 1} Fibonacci(5*n-1)*x^n )*( 1 + 2*Sum_{n >= 1} Fibonacci(5*n-1)*(-x)^n ).
1 + 125*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + Sum_{n >= 1} Lucas(5*n)*x^n )*( 1 + Sum_{n >= 1} Lucas(5*n)*(-x)^n ). (End)
Extensions
More terms from James Sellers, Jan 20 2000
Chebyshev and Pell comments from Wolfdieter Lang, Sep 10 2004
Comments