cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049764 a(n) = Sum_{k=1..n} T(n,k), array T as in A049763.

Original entry on oeis.org

0, 0, 1, 1, 3, 1, 5, 7, 9, 10, 18, 10, 18, 25, 28, 40, 44, 26, 52, 79, 60, 78, 73, 101, 117, 133, 114, 136, 91, 90, 158, 188, 220, 244, 218, 220, 208, 283, 280, 303, 220, 319, 287, 393, 398, 446, 391, 459, 435, 534, 481, 471, 428, 499
Offset: 1

Views

Author

Keywords

Crossrefs

Row sums of A049763.

Programs

  • GAP
    List([1..60], n-> Sum([1..n], k-> PowerMod(n,4,k)) ); # G. C. Greubel, Dec 13 2019
  • Magma
    [&+[n^4 mod i: i in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Sep 18 2017
    
  • Maple
    seq( add( `mod`(n^4, k), k = 1..n), n = 1..60); # G. C. Greubel, Dec 13 2019
  • Mathematica
    Table[Sum[Mod[n^4, i], {i, n}], {n, 60}] (* Vincenzo Librandi, Sep 18 2017 *)
    Table[Sum[PowerMod[n,4,i],{i,n}],{n,60}] (* Harvey P. Dale, Aug 29 2021 *)
  • PARI
    a(n) = sum(i=1, n, lift(Mod(n, i)^4)); \\ Michel Marcus, Sep 18 2017
    
  • Sage
    [sum(power_mod(n,4,k) for k in (1..n)) for n in (1..60)] # G. C. Greubel, Dec 13 2019
    

Formula

a(n) = Sum_{i=1..n} (n^4 mod i). - Wesley Ivan Hurt, Sep 15 2017