A050168 a(0) = 1; for n > 0, a(n) = binomial(n, floor(n/2)) + binomial(n-1, floor(n/2)).
1, 2, 3, 5, 9, 16, 30, 55, 105, 196, 378, 714, 1386, 2640, 5148, 9867, 19305, 37180, 72930, 140998, 277134, 537472, 1058148, 2057510, 4056234, 7904456, 15600900, 30458900, 60174900, 117675360, 232676280, 455657715, 901620585, 1767883500
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- A. V. Sills and H. Wang, On the maximal Wiener index and related questions, Discrete Applied Mathematics, Volume 160, Issues 10-11, July 2012, Pages 1615-1623. - From _N. J. A. Sloane_, Sep 21 2012
Programs
-
Haskell
a050168 n = a050168_list !! n a050168_list = 1 : zipWith (+) a001405_list (tail a001405_list) -- Reinhard Zumkeller, Mar 04 2012
-
Magma
m:=40; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+x)/(2*x)*(Sqrt((1+2*x)/(1-2*x))-1))); // G. C. Greubel, Oct 26 2018 -
Mathematica
CoefficientList[(1+x)/(2x) (Sqrt[(1+2x)/(1-2x)]-1) + O[x]^34, x] (* Jean-François Alcover, Aug 04 2018, after Sergei N. Gladkovskii *)
-
PARI
x='x+O('x^40); Vec((1+x)/(2*x)*(sqrt((1+2*x)/(1-2*x))-1)) \\ G. C. Greubel, Oct 26 2018
Formula
Asymptotic to c*2^n/sqrt(n) where c = (3/4)*sqrt(2/Pi) = 0.598413... - Benoit Cloitre, Jan 13 2003
For n > 0: a(n) = A208976(n-1) + 1. -Reinhard Zumkeller, Mar 04 2012
Conjecture: (n+1)*a(n) + (n-3)*a(n-1) + 2*(-2*n+1)*a(n-2) + 4*(-n+3)*a(n-3) = 0. - R. J. Mathar, Nov 26 2012
G.f.: (1+x)/(2*x)*(sqrt((1+2*x)/(1-2*x))-1). - Sergei N. Gladkovskii, Jul 26 2013
G.f.: (1+x)/( W(0)*(1-2*x)*x) - (1+x)/(2*x), where W(k)= 1 + 1/(1 - 2*x/(2*x + (k+1)/(x*(2*k+1))/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
Comments