cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050228 a(n) is the number of subsequences {s(k)} of {1,2,3,...n} such that s(k+1)-s(k) is 1 or 3.

Original entry on oeis.org

1, 3, 6, 11, 19, 31, 49, 76, 116, 175, 262, 390, 578, 854, 1259, 1853, 2724, 4001, 5873, 8617, 12639, 18534, 27174, 39837, 58396, 85596, 125460, 183884, 269509, 394999, 578914, 848455, 1243487, 1822435, 2670925, 3914448, 5736920, 8407883
Offset: 1

Views

Author

John W. Layman, Dec 20 1999

Keywords

Comments

The second differences c(n) of {a(n)} satisfy c(n)=c(n-1)+c(n-3) and give A000930 with the first 5 terms deleted.
Partial sums of A077868. - Paul Barry, Sep 16 2004

References

  • Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157.

Crossrefs

Programs

  • Magma
    A050228:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+1, j+2): j in [0..Floor((n+1)/3)]]) >;
    [A050228(n): n in [1..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    with(combstruct): SubSetSeqU := [T, {T=Subst(U,U), S=Set(U, card>=3), U=Sequence(Z, card>=3)}, unlabeled]: seq(count(SubSetSeqU, size=n), n=9..46); # Zerinvary Lajos, Mar 18 2008
  • Mathematica
    Rest[CoefficientList[Series[1/((1-x)^2*(1-x-x^3)), {x, 0, 50}], x]] (* G. C. Greubel, Apr 27 2017 *)
    LinearRecurrence[{3,-3,2,-2,1},{1,3,6,11,19},50] (* Harvey P. Dale, Apr 21 2020 *)
  • PARI
    my(x='x+O('x^50)); Vec(x/((1-x)^3-x^3*(1-x)^2)) \\ G. C. Greubel, Apr 27 2017
    
  • SageMath
    def A050228(n): return sum(binomial(n-2*j+1, j+2) for j in (0..((n+1)//3)))
    [A050228(n) for n in (1..40)] # G. C. Greubel, Jul 27 2022

Formula

From Paul Barry, Sep 16 2004: (Start)
G.f.: x/((1-x)^3 - x^3(1-x)^2).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 2*a(n-4) + a(n-5).
a(n-1) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k+2). (End)
G.f. = 1/((1-x)^2*(1-x-x^3)). - N. J. A. Sloane, Jun 02 2021
a(n) = A000930(n+5) - n - 4. - Greg Dresden, Jun 20 2021
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+1)/3)} binomial(n-2*j+1, j+2).
a(n) = A099567(n+1, 2). (End)