cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A027571 Numbers k such that k^2 + (k+1)^2 is palindromic.

Original entry on oeis.org

0, 1, 9, 12, 16, 919, 1257, 1262, 1621, 1706, 170706, 904280, 1258182, 7901014, 8659929, 12458597, 17070706, 80472264, 1616689803, 1680689788, 1705387643, 7360311900, 8032814139, 8055329360, 12574461617, 16794058711, 165058650666, 844706005220, 1250999800012, 1255589965852
Offset: 1

Views

Author

Keywords

Comments

a(50) > 70710678118654752440. - Patrick De Geest, May 25 2021

Crossrefs

A050236 is a subsequence.

Programs

  • PARI
    isok(m) = my(d=digits(m^2+(m+1)^2)); d == Vecrev(d); \\ Michel Marcus, Jan 05 2019

Extensions

a(18)-a(21) from Donovan Johnson, Aug 26 2012
a(22)-a(29) from Giovanni Resta, Aug 06 2019
a(1)=0 added by Patrick De Geest, May 25 2021

A050236 Indices of consecutive squares palindromic primes; x such that x^2 + (x+1)^2 is palindromic and prime.

Original entry on oeis.org

1, 9, 12, 1262
Offset: 1

Views

Author

Keywords

Comments

No other terms < 20000000000. - Patrick De Geest, Aug 15 1999

Crossrefs

Cf. A050239.
Intersection of A027861 and A027571.

Programs

A027572 Palindromes of form n^2 + (n+1)^2.

Original entry on oeis.org

1, 5, 181, 313, 545, 1690961, 3162613, 3187813, 5258525, 5824285, 58281418285, 1635446445361, 3166046406613, 124852060258421, 149988757889941, 310433303334013, 582818040818285, 12951570707515921, 5227371841481737225, 5649436330336349465, 5816694029204966185
Offset: 1

Views

Author

Keywords

Comments

a(50) > 10^40. - Patrick De Geest, May 25 2021

Crossrefs

A050239 is a subsequence.

Programs

  • Mathematica
    Select[Total/@Partition[Range[0,2000]^2,2,1],PalindromeQ] (* The program generates the  first 10 terms of the sequence. *) (* Harvey P. Dale, Jan 19 2025 *)

Formula

a(n) = (4*m^2 - 4*m + 2)/2 = (m-1)^2 + m^2 or a(n) = (4*n^2 + 4*n + 2)/2 = n^2 + (n+1)^2 with n = m - 1.

Extensions

a(18)-a(21) from Donovan Johnson, Aug 26 2012
a(1)=1 added by Philip Mizzi, Sep 02 2019
a(22)-a(49) from Patrick De Geest, May 25 2021
Showing 1-3 of 3 results.