A050328 Number of ordered factorizations of n into squarefree numbers > 1.
1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 5, 1, 3, 3, 1, 1, 5, 1, 5, 3, 3, 1, 7, 1, 3, 1, 5, 1, 13, 1, 1, 3, 3, 3, 13, 1, 3, 3, 7, 1, 13, 1, 5, 5, 3, 1, 9, 1, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 31, 1, 3, 5, 1, 3, 13, 1, 5, 3, 13, 1, 25, 1, 3, 5, 5, 3, 13, 1, 9, 1, 3, 1, 31, 3, 3, 3, 7, 1, 31, 3, 5, 3, 3, 3, 11, 1, 5
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (genericIndex) a050328 n = genericIndex a050328_list (n-1) a050328_list = f 1 where f x = (if x == 1 then 1 else sum $ map (a050328 . (div x)) $ tail $ a206778_row x) : f (x + 1) -- Reinhard Zumkeller, May 03 2013
-
Mathematica
a[n_]:=If[n==1, n, Sum[If[(d
Indranil Ghosh, May 27 2017 *) -
PARI
A050328(n) = if(1==n,n,sumdiv(n,d,if((d
A050328(d),0))); \\ Antti Karttunen, May 27 2017
Formula
Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of squarefree numbers > 1.
a(A000961(n)) = 1.
a(n) = Sum_{d divides n, dA008966(n/d)*a(d). - Vladeta Jovovic, Sep 25 2002, corrected by Antti Karttunen, May 27 2017
G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} mu(k)^2*A(x^k). - Ilya Gutkovskiy, May 10 2019
Comments