cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A206778 Irregular triangle in which n-th row lists squarefree divisors (A005117) of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 1, 3, 1, 2, 5, 10, 1, 11, 1, 2, 3, 6, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 1, 17, 1, 2, 3, 6, 1, 19, 1, 2, 5, 10, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 6, 1, 5, 1, 2, 13, 26, 1, 3, 1, 2, 7, 14, 1, 29
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2012

Keywords

Examples

			Triangle begins:
.   1: [1]
.   2: [1, 2]
.   3: [1, 3]
.   4: [1, 2]
.   5: [1, 5]
.   6: [1, 2, 3, 6]
.   7: [1, 7]
.   8: [1, 2]
.   9: [1, 3]
.  10: [1, 2, 5, 10]
.  11: [1, 11]
.  12: [1, 2, 3, 6].
		

Crossrefs

Cf. A008966, A034444 (row lengths), A048250 (row sums), A206787; A077610.

Programs

  • Haskell
    a206778 n k = a206778_row n !! k
    a206778_row = filter ((== 1) . a008966) . a027750_row
    a206778_tabf = map a206778_row [1..]
    -- Reinhard Zumkeller, May 03 2013, Feb 12 2012
    
  • Maple
    A206778 := proc(n)
        local sqdvs ,nfac,d;
        sqdvs := {} ;
        nfac := ifactors(n)[2] ;
        for d in numtheory[divisors](n) do
            if issqrfree(d) then
                sqdvs := sqdvs union {d} ;
            end if;
        end do:
        sort(sqdvs) ;
    end proc:
    seq(op(A206778(n)),n=1..10) ; # R. J. Mathar, Mar 06 2023
  • Mathematica
    Flatten[Table[Select[Divisors[n],SquareFreeQ],{n,30}]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    row(n) = select(x -> issquarefree(x), divisors(n)); \\ Amiram Eldar, May 02 2025

A114006 Row sums of number triangle A114004.

Original entry on oeis.org

1, -1, -1, 1, -1, 3, -1, -1, 1, 3, -1, -5, -1, 3, 3, 1, -1, -5, -1, -5, 3, 3, -1, 7, 1, 3, -1, -5, -1, -13, -1, -1, 3, 3, 3, 13, -1, 3, 3, 7, -1, -13, -1, -5, -5, 3, -1, -9, 1, -5, 3, -5, -1, 7, 3, 7, 3, 3, -1, 31, -1, 3, -5, 1, 3, -13, -1, -5, 3, -13, -1, -25, -1, 3, -5, -5, 3, -13, -1, -9, 1, 3, -1, 31, 3, 3, 3, 7, -1, 31, 3, -5, 3, 3, 3, 11
Offset: 1

Views

Author

Paul Barry, Nov 12 2005

Keywords

Comments

A signed version of A050328.

Crossrefs

Programs

  • Mathematica
    a050328[n_]:=If[n==1, n, Sum[If[(dIndranil Ghosh, May 27 2017 *)
  • PARI
    A050328(n) = if(1==n,n,sumdiv(n,d,if((dA050328(d),0)));
    A114006(n) = ((-1)^bigomega(n) * A050328(n)); \\ Antti Karttunen, May 27 2017

Formula

a(n) = A008836(n) * A050328(n). - Antti Karttunen, May 27 2017
a(1) = 1; a(n) = Sum_{d|n, d < n} mu(n/d) * a(d). - Ilya Gutkovskiy, Feb 23 2020

Extensions

More terms, incorrect formulas replaced by a correct one - Antti Karttunen, May 27 2017

A114005 First column of number triangle A114004.

Original entry on oeis.org

1, -2, -2, 2, -2, 6, -2, -2, 2, 6, -2, -10, -2, 6, 6, 2, -2, -10, -2, -10, 6, 6, -2, 14, 2, 6, -2, -10, -2, -26, -2, -2, 6, 6, 6, 26, -2, 6, 6, 14, -2, -26, -2, -10, -10, 6, -2, -18, 2, -10, 6, -10, -2, 14, 6, 14, 6, 6, -2, 62, -2, 6, -10, 2, 6, -26, -2, -10, 6, -26, -2, -50, -2, 6, -10, -10, 6, -26, -2, -18, 2, 6, -2, 62, 6, 6, 6, 14, -2, 62, 6, -10, 6, 6, 6
Offset: 1

Views

Author

Paul Barry, Nov 12 2005

Keywords

Comments

Moebius transform of A114006. - Mats Granvik, Jan 02 2009

Crossrefs

Programs

Formula

a(1) = 1, for n > 1, a(n) = 2*A114006(n). - Corrected by Antti Karttunen, May 27 2017
a(1) = 1; a(n) = -2 * Sum_{d|n, d < n} a(d). - Ilya Gutkovskiy, Feb 23 2020

Extensions

More terms from Antti Karttunen, May 27 2017

A050329 Number of ordered factorizations into squarefree factors indexed by prime signatures.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 7, 13, 1, 13, 9, 31, 1, 25, 11, 57, 1, 41, 101, 13, 75, 63, 91, 1, 61, 239, 15, 233, 129, 133, 1, 85, 469, 17, 535, 231, 409, 183, 1, 705, 113, 919, 321, 815, 19, 1029, 377, 1177, 241, 1, 1671, 145, 541, 2593, 681, 1301, 21, 1763, 575, 2741
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Crossrefs

Formula

a(n) = A050328(A025487(n)).

A385511 Numbers that are less than the number of their ordered factorizations into squarefree numbers greater than 1.

Original entry on oeis.org

2520, 5040, 7560, 10080, 10800, 12600, 15120, 20160, 21600, 22680, 23760, 25200, 27720, 30240, 32400, 35280, 37800, 43200, 45360, 47520, 50400, 52920, 55440, 60480, 64800, 65520, 70560, 71280, 75600, 79200, 83160, 86400, 88200, 90720, 95040, 98280, 100800, 105840
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2025

Keywords

Comments

Numbers k such that A050328(k) > k.
If k is a term then all the smaller numbers with the same prime signature (A118914) as k are also terms.
The least term that is not divisible by 5 is a(112) = 399168.
The least term that is not divisible by 3 is 144848704000.
The least odd term is A147516(43302) = 16639855392913235373515625.

Crossrefs

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = DivisorSum[n, f[#] &, # < n && SquareFreeQ[n/#] &]; Select[Range[110000], f[#] > # &]
  • PARI
    f(n) = if(n == 1, 1, sumdiv(n, d, if((d k;

A372510 Number of ordered factorizations of 2*n-1 into twin primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 1, 2, 2, 0, 2, 1, 1, 3, 0, 1, 2, 0, 2, 2, 1, 1, 3, 2, 0, 0, 1, 1, 3, 2, 0, 1, 0, 2, 2, 0, 2, 2, 2, 0, 3, 1, 1, 6, 1, 1, 0, 0, 0, 3, 2, 1, 2, 1, 0, 2, 0, 2, 4, 1, 1, 0, 2, 2, 3, 1, 1, 3, 2, 0, 0, 0, 0, 6, 0, 1, 3, 0, 3, 2, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, May 04 2024

Keywords

Examples

			a(23) = 3 because we have 23 * 2 - 1 = 45 = 3 * 3 * 5 = 3 * 5 * 3 = 5 * 3 * 3.
		

Crossrefs

Formula

If 2*n-1 = Product A001097(k)^e(k) then a(n) = A008480(2*n-1), otherwise 0.
Showing 1-6 of 6 results.