cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050328 Number of ordered factorizations of n into squarefree numbers > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 5, 1, 3, 3, 1, 1, 5, 1, 5, 3, 3, 1, 7, 1, 3, 1, 5, 1, 13, 1, 1, 3, 3, 3, 13, 1, 3, 3, 7, 1, 13, 1, 5, 5, 3, 1, 9, 1, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 31, 1, 3, 5, 1, 3, 13, 1, 5, 3, 13, 1, 25, 1, 3, 5, 5, 3, 13, 1, 9, 1, 3, 1, 31, 3, 3, 3, 7, 1, 31, 3, 5, 3, 3, 3, 11, 1, 5
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a050328 n = genericIndex a050328_list (n-1)
    a050328_list = f 1 where
       f x = (if x == 1 then 1 else
             sum $ map (a050328 . (div x)) $ tail $ a206778_row x) : f (x + 1)
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    a[n_]:=If[n==1, n, Sum[If[(dIndranil Ghosh, May 27 2017 *)
  • PARI
    A050328(n) = if(1==n,n,sumdiv(n,d,if((dA050328(d),0))); \\ Antti Karttunen, May 27 2017

Formula

Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of squarefree numbers > 1.
a(A000961(n)) = 1.
a(A002110(n)) = A000670(n).
a(n) = Sum_{d divides n, dA008966(n/d)*a(d). - Vladeta Jovovic, Sep 25 2002, corrected by Antti Karttunen, May 27 2017
G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} mu(k)^2*A(x^k). - Ilya Gutkovskiy, May 10 2019

A114004 Inverse of triangle A114002.

Original entry on oeis.org

1, -2, 1, -2, 0, 1, 2, -2, 0, 1, -2, 0, 0, 0, 1, 6, -2, -2, 0, 0, 1, -2, 0, 0, 0, 0, 0, 1, -2, 2, 0, -2, 0, 0, 0, 1, 2, 0, -2, 0, 0, 0, 0, 0, 1, 6, -2, 0, 0, -2, 0, 0, 0, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -10, 6, 2, -2, 0, -2, 0, 0, 0, 0, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, -2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1, 6, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Nov 12 2005

Keywords

Comments

Row sums are A114006. First column is A114005.

Examples

			Triangle begins
1;
-2, 1;
-2, 0, 1;
2,-2, 0, 1;
-2, 0, 0, 0, 1;
6,-2,-2, 0, 0, 1;
-2, 0, 0, 0, 0, 0, 1;
-2, 2, 0,-2, 0, 0, 0, 1;
2, 0,-2, 0, 0, 0, 0, 0, 1;
6,-2, 0, 0,-2, 0, 0, 0, 0, 1;
		

A114005 First column of number triangle A114004.

Original entry on oeis.org

1, -2, -2, 2, -2, 6, -2, -2, 2, 6, -2, -10, -2, 6, 6, 2, -2, -10, -2, -10, 6, 6, -2, 14, 2, 6, -2, -10, -2, -26, -2, -2, 6, 6, 6, 26, -2, 6, 6, 14, -2, -26, -2, -10, -10, 6, -2, -18, 2, -10, 6, -10, -2, 14, 6, 14, 6, 6, -2, 62, -2, 6, -10, 2, 6, -26, -2, -10, 6, -26, -2, -50, -2, 6, -10, -10, 6, -26, -2, -18, 2, 6, -2, 62, 6, 6, 6, 14, -2, 62, 6, -10, 6, 6, 6
Offset: 1

Views

Author

Paul Barry, Nov 12 2005

Keywords

Comments

Moebius transform of A114006. - Mats Granvik, Jan 02 2009

Crossrefs

Programs

Formula

a(1) = 1, for n > 1, a(n) = 2*A114006(n). - Corrected by Antti Karttunen, May 27 2017
a(1) = 1; a(n) = -2 * Sum_{d|n, d < n} a(d). - Ilya Gutkovskiy, Feb 23 2020

Extensions

More terms from Antti Karttunen, May 27 2017

A157657 a(1) = 1, a(n) = -mu(n) for n >= 2.

Original entry on oeis.org

1, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, -1, 1, 0, 1, -1, 0, 0, -1, 1, 1, 0, -1, 1, 1, 0, 1, -1, 0, 0, -1, 1, 1, 0, 0, -1, 1, 0, -1, -1, -1, 0, 1, 0, -1, 0, -1, -1, -1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Jaroslav Krizek, Mar 03 2009

Keywords

Comments

Apparently the Dirichlet inverse of A114006. [R. J. Mathar, Jul 15 2010]
Not multiplicative; for example a(2)*a(3) != a(6). - R. J. Mathar, Mar 31 2012

Crossrefs

Cf. A008683, A157658 (same except for a(1)).

Programs

Extensions

Added more terms, Joerg Arndt, Aug 25 2014
Showing 1-4 of 4 results.