cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050392 Exponential reversion of Euler totient function A000010.

Original entry on oeis.org

1, -1, 1, 3, -39, 257, -909, -6389, 183715, -2326009, 15050003, 140089725, -6804608381, 130909360315, -1286161585477, -12952744700713, 970148927462835, -25588194678272039, 347909302401071797
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    length = 20; Range[length]! InverseSeries[Sum[EulerPhi[n] x^n/n!, {n, 1, length}] + O[x]^(length+1)][[3]] (* Vladimir Reshetnikov, Nov 07 2015 *)
  • PARI
    seq(n)= Vec(serlaplace(serreverse(sum(k=1, n, eulerphi(k)*x^k/k!) + O(x*x^n)))); \\ Michel Marcus, Apr 21 2020

Formula

E.g.f. A(x) satisfies: A(x) = x - Sum_{k>=2} phi(k) * A(x)^k / k!. - Ilya Gutkovskiy, Apr 22 2020

A292875 Expansion of the series reversion of Sum_{k>=1} x^k*k*Product_{p|k, p prime} (1 + 1/p).

Original entry on oeis.org

1, -3, 14, -81, 528, -3708, 27388, -209739, 1650204, -13258230, 108311352, -896946048, 7512187398, -63520243398, 541511083648, -4649182740159, 40163784583752, -348870785898510, 3045109181792304, -26694854975488554, 234936349043049246, -2074958037081265050
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 25 2017

Keywords

Comments

Reversion of g.f. for A001615 (Dedekind psi function).

Crossrefs

Formula

G.f. A(x) satisfies: Sum_{k>=1} A(x)^k*k*Product_{p|k, p prime} (1 + 1/p) = x.

A307487 G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} mu(k)*x^k*A(x)^k/(1 - x^k*A(x)^k)^2, where mu() is the Möbius function (A008683).

Original entry on oeis.org

1, 1, 2, 6, 19, 65, 231, 847, 3187, 12223, 47610, 187836, 749055, 3014453, 12226718, 49931342, 205133243, 847224291, 3515681010, 14650664552, 61286007817, 257256430363, 1083272333869, 4574656128903, 19369837160689, 82214738381631, 349743277470990
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 65*x^5 + 231*x^6 + 847*x^7 + 3187*x^8 + 12223*x^9 + 47610*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 27; CoefficientList[1/x InverseSeries[Series[x/(1 + Sum[EulerPhi[k] x^k, {k, 1, terms}]), {x, 0, terms}], x], x]
    terms = 27; A[] = 0; Do[A[x] = 1 + Sum[MoebiusMu[k] x^k A[x]^k/(1 - x^k A[x]^k)^2, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 27; A[] = 0; Do[A[x] = 1 + Sum[EulerPhi[k] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} phi(k)*x^k*A(x)^k, where phi() is the Euler totient function (A000010).
G.f.: A(x) = (1/x)*Series_Reversion(x/(1 + Sum_{k>=1} phi(k)*x^k)).
Showing 1-3 of 3 results.