cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A300011 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k/k!), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, 1, 2, 6, 20, 80, 362, 1820, 10084, 60522, 391864, 2714514, 20001700, 156107224, 1284705246, 11112088358, 100698613720, 953478331288, 9410963022318, 96614921664444, 1029705968813656, 11373102766644372, 129972789566984682, 1534638410054873892, 18696544357738885720
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2018

Keywords

Comments

Exponential transform of A000010.

Examples

			E.g.f.: A(x) = 1 + x/1! + 2*x^2/2! + 6*x^3/3! + 20*x^4/4! + 80*x^5/5! + 362*x^6/6! + 1820*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
          binomial(n-1, j-1)*numtheory[phi](j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 09 2018
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[Sum[EulerPhi[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[EulerPhi[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, eulerphi(k)*binomial(n-1, k-1)*a(n-k))); \\ Seiichi Manyama, Feb 27 2022

Formula

E.g.f.: exp(Sum_{k>=1} A000010(k)*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} phi(k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Feb 27 2022

A050391 Reversion of Euler totient function A000010.

Original entry on oeis.org

1, -1, 0, 3, -8, 12, -6, -37, 208, -730, 1708, -1278, -10018, 56782, -163644, 229985, 389830, -3724538, 13460550, -28799694, 12470564, 205544596, -1084748334, 3195484242, -4851317704, -7421547798, 81343472008
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Crossrefs

Programs

  • PARI
    Vec(serreverse(sum(n=1, 50, moebius(n)*x^n/(1-x^n)^2 + O(x^50)))) \\ Michel Marcus, Sep 25 2017

Formula

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} phi(k) * A(x)^k. - Ilya Gutkovskiy, Apr 22 2020
Showing 1-2 of 2 results.