A050474 Solutions to 2*phi(x) = x+1.
1, 3, 15, 255, 65535, 83623935, 4294967295, 6992962672132095
Offset: 1
Examples
2*phi(15) = 2*8 = 15 + 1, so 15 is a member of the sequence.
References
- A. H. Beiler, Recreations in the Theory of Numbers, page 92.
Links
- D. H. Lehmer, On Euler's totient function, Bulletin of the American Mathematical Society, 38 (1932), 745-751.
- E. Wong, Computations on normal families of primes, Simon Fraser University, 1997, MSc thesis.
Programs
-
Magma
[n: n in [1..2*10^6] | 2*EulerPhi(n) eq (n+1)]; // Vincenzo Librandi, Mar 22 2015
-
Mathematica
Select[Range[700000], (# + 1)== 2 EulerPhi[#] &] (* Vincenzo Librandi, Mar 22 2015 *)
-
PARI
is_A050474(n)=if(2*eulerphi(n)==n+1,1,0) \\ Chris Boyd, Mar 22 2015
Formula
A number n is in the sequence iff phi(n^2)=1+2+3+...+n because n is in the sequence <=> 2*phi(n)=n+1 <=> n*phi(n)=n*(n+1)/2 <=> phi(n^2)=1+2+3++...+n. For n=1,2,...,5, a(n)=2^2^(n-1)-1. - Farideh Firoozbakht, Jan 26 2006
Comments