cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050476 a(n) = C(n)*(6*n + 1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 7, 26, 95, 350, 1302, 4884, 18447, 70070, 267410, 1024556, 3938662, 15184876, 58689100, 227327400, 882230895, 3429693990, 13353413370, 52062618300, 203235266850, 794258570820, 3107215911540, 12167180964120, 47685286297350, 187036101361980, 734153906619252, 2883674432327864, 11333968799308652
Offset: 0

Views

Author

Barry E. Williams, Dec 24 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=6 of A330965.

Programs

  • Magma
    [Catalan(n)*(6*n+1):n in [0..27] ]; // Marius A. Burtea, Jan 05 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (5-8*x-5*Sqrt(1-4*x))/(2*x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n](6n+1),{n,0,20}] (* Harvey P. Dale, Nov 05 2011 *)

Formula

5*(n+1)*a(n) + 2*(-14*n-1)*a(n-1) + 16*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Feb 04 2015
G.f.: (5 - 8*x - 5*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 5*binomial(2*n, n-1) = A000984(n) + 5*A001791(n).
a(n) ~ 4^n * 6/sqrt(Pi*n). (End)