cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050489 a(n) = C(n)*(10*n + 1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 11, 42, 155, 574, 2142, 8052, 30459, 115830, 442442, 1696396, 6525246, 25169452, 97319900, 377096040, 1463921595, 5692584870, 22169259090, 86452604700, 337547269290, 1319388204420, 5162382341220, 20217646564440, 79246770753150, 310866899505084
Offset: 0

Views

Author

Barry E. Williams, Dec 27 1999

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=10 of A330965.

Programs

Formula

-(n+1)*(10*n-9)*a(n) + 2*(10*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2014
From Stefano Spezia, Feb 16 2020: (Start)
O.g.f.: 2*(1 + sqrt(1 - 4*x) + 16*x)/((1 + sqrt(1 - 4*x))^2*sqrt(1 - 4*x)).
E.g.f.: exp(2*x)*(I_0(2*x) + 9*I_1(2*x)), where I_n(x) is the modified Bessel function of the first kind.
(End)
G.f.: (9 - 16*x - 9*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Amiram Eldar, Jul 08 2023
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 9*binomial(2*n, n-1) = A000984(n) + 9*A001791(n).
a(n) ~ 4^n * 10/sqrt(Pi*n). (End)

Extensions

Corrected and extended by Harvey P. Dale, Jul 19 2011