A050489 a(n) = C(n)*(10*n + 1) where C(n) = Catalan numbers (A000108).
1, 11, 42, 155, 574, 2142, 8052, 30459, 115830, 442442, 1696396, 6525246, 25169452, 97319900, 377096040, 1463921595, 5692584870, 22169259090, 86452604700, 337547269290, 1319388204420, 5162382341220, 20217646564440, 79246770753150, 310866899505084
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Programs
-
Magma
[Catalan(n)*(10*n+1):n in [0..30] ]; // Marius A. Burtea, Jan 05 2020
-
Mathematica
Table[CatalanNumber[n](10n+1),{n,0,30}] (* Harvey P. Dale, Jul 19 2011 *)
-
PARI
a(n)=binomial(2*n,n)/(n+1)*(10*n+1) \\ Charles R Greathouse IV, Oct 23 2023
Formula
-(n+1)*(10*n-9)*a(n) + 2*(10*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2014
From Stefano Spezia, Feb 16 2020: (Start)
O.g.f.: 2*(1 + sqrt(1 - 4*x) + 16*x)/((1 + sqrt(1 - 4*x))^2*sqrt(1 - 4*x)).
E.g.f.: exp(2*x)*(I_0(2*x) + 9*I_1(2*x)), where I_n(x) is the modified Bessel function of the first kind.
(End)
G.f.: (9 - 16*x - 9*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Amiram Eldar, Jul 08 2023
From Peter Bala, Aug 23 2025: (Start)
a(n) ~ 4^n * 10/sqrt(Pi*n). (End)
Extensions
Corrected and extended by Harvey P. Dale, Jul 19 2011