A050509 House numbers (version 2): a(n) = (n+1)^3 + (n+1)*Sum_{i=0..n} i.
1, 10, 36, 88, 175, 306, 490, 736, 1053, 1450, 1936, 2520, 3211, 4018, 4950, 6016, 7225, 8586, 10108, 11800, 13671, 15730, 17986, 20448, 23125, 26026, 29160, 32536, 36163, 40050, 44206, 48640, 53361, 58378, 63700, 69336, 75295, 81586, 88218, 95200, 102541
Offset: 0
Examples
* * a(2) = * * + * * = 10. * * * *
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(3*n+2)*(n+1)^2/2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
-
Mathematica
Table[((1+n)^2*(2+3n))/2,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,10,36,88},40] (* Harvey P. Dale, Jun 26 2011 *)
-
PARI
a(n)=(1/2)*(3*n+2)*(n+1)^2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = (1/2)*(3*n+2)*(n+1)^2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=10, a(2)=36, a(3)=88. - Harvey P. Dale, Jun 26 2011
G.f.: (1+6*x+2*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n} (n+1)*(3*i+1). - Bruno Berselli, Sep 08 2015
Sum_{n>=0} 1/a(n) = 9*log(3) - sqrt(3)*Pi - Pi^2/3 = 1.15624437161388... . - Vaclav Kotesovec, Oct 04 2016
E.g.f.: exp(x)*(2 + 18*x + 17*x^2 + 3*x^3)/2. - Elmo R. Oliveira, Aug 06 2025
Comments