A050724 Numbers k such that the decimal expansion of 3^k contains no pair of consecutive equal digits (probably finite).
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 24, 26, 42, 66, 67, 133
Offset: 1
Examples
3^133 = 2865014852390475710679572105323242035759805416923029389510561523.
Programs
-
Maple
q:= n-> (s-> andmap(i-> s[i]<>s[i+1], [$1..length(s)-1]))(""||(3^n)): select(q, [$0..200])[]; # Alois P. Heinz, Mar 07 2024
-
Mathematica
Select[Range[0,500],!MemberQ[Differences[IntegerDigits[3^#]],0]&] (* Harvey P. Dale, Nov 15 2011 *)
-
PARI
isok(n) = {my(d = digits(3^n), c = d[1]); for (i=2, #d, if (d[i] == c, return (0)); c = d[i];); return (1);} \\ Michel Marcus, Oct 16 2019
Comments