cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050787 Consider the Diophantine equation x^3 + y^3 = z^3 - 1 (0 < x < y < z) or 'Fermat near misses'. Arrange solutions by increasing values of z. Sequence gives values of z.

Original entry on oeis.org

9, 144, 172, 505, 577, 729, 904, 1010, 1210, 2304, 3097, 3753, 5625, 6081, 6756, 8703, 11664, 12884, 16849, 18649, 21609, 24987, 29737, 36864, 37513, 38134, 38239, 41545, 49461, 51762, 59049, 66465, 68010, 69709, 71852, 73627, 78529
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

n^3 - 1 is expressible as the sum of two distinct positive cubes. [corrected by Altug Alkan, Apr 11 2016]
The subsequence of primes in the sequence begins: 577, 38239, 69709. - Jonathan Vos Post, May 13 2010
Sequence is infinite. One subsequence is b (m) = 9 m^4 = {9, 144, 729, 2304, 5625, 11664, 21609, 36864, 59049, ...} = a (1, 2, 6, 10, 13, 17, 21, 24, 31, ...). - Zak Seidov, Sep 16 2013

Examples

			2304 is in the sequence because 575^3 + 2292^3 = 2304^3 - 1.
		

References

  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
  • David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, On number "729", p. 147.

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all entries <= N
    P:= proc(r)
      local dcands, xs;
      dcands:= select(d -> issqr(-3*d^4+12*d*r), numtheory[divisors](r));
      xs:= map(d -> [solve(d^2-3*d*x+3*x^2-r/d,x)], dcands);
      select(p -> p[1]<>p[2], select(type,xs,list(posint)));
    end proc:
    select(z -> nops(P(z^3-1))>0, [$1..N]); # Robert Israel, Jun 09 2014
  • Mathematica
    r[z_] := Reduce[1 < x < y < z && x^3 + y^3 == z^3 - 1, {x, y}, Integers]; Reap[z = 4; While[z < 10^5, rz = r[z]; If[rz =!= False, Print[xyz = {x, y, z} /. ToRules[rz]]; Sow[xyz[[3]]]]; z++]][[2, 1]] (* Jean-François Alcover, Dec 27 2011, updated Feb 11 2014 *)
  • PARI
    is(n)=if(n<2,return(0));my(c3=n^3);for(a=2,sqrtnint(c3-5,3),if(ispower(c3-1-a^3,3),return(1)));0 \\ Charles R Greathouse IV, Oct 26 2014
    
  • PARI
    T=thueinit('x^3+1);
    is(n)=n>8&&#select(v->min(v[1],v[2])>1,thue(T,n^3-1))>0 \\ Charles R Greathouse IV, Oct 26 2014

Extensions

More terms from Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Definition corrected by Robert Israel, Jun 09 2014