A050787 Consider the Diophantine equation x^3 + y^3 = z^3 - 1 (0 < x < y < z) or 'Fermat near misses'. Arrange solutions by increasing values of z. Sequence gives values of z.
9, 144, 172, 505, 577, 729, 904, 1010, 1210, 2304, 3097, 3753, 5625, 6081, 6756, 8703, 11664, 12884, 16849, 18649, 21609, 24987, 29737, 36864, 37513, 38134, 38239, 41545, 49461, 51762, 59049, 66465, 68010, 69709, 71852, 73627, 78529
Offset: 1
Examples
2304 is in the sequence because 575^3 + 2292^3 = 2304^3 - 1.
References
- Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
- David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, On number "729", p. 147.
Links
- Jean-François Alcover and Charles R Greathouse IV, Table of n, a(n) for n = 1..104 (first 60 terms from Alcover)
- Eric Weisstein's World of Mathematics, Diophantine Equation - 3rd Powers
Programs
-
Maple
N:= 10000: # to get all entries <= N P:= proc(r) local dcands, xs; dcands:= select(d -> issqr(-3*d^4+12*d*r), numtheory[divisors](r)); xs:= map(d -> [solve(d^2-3*d*x+3*x^2-r/d,x)], dcands); select(p -> p[1]<>p[2], select(type,xs,list(posint))); end proc: select(z -> nops(P(z^3-1))>0, [$1..N]); # Robert Israel, Jun 09 2014
-
Mathematica
r[z_] := Reduce[1 < x < y < z && x^3 + y^3 == z^3 - 1, {x, y}, Integers]; Reap[z = 4; While[z < 10^5, rz = r[z]; If[rz =!= False, Print[xyz = {x, y, z} /. ToRules[rz]]; Sow[xyz[[3]]]]; z++]][[2, 1]] (* Jean-François Alcover, Dec 27 2011, updated Feb 11 2014 *)
-
PARI
is(n)=if(n<2,return(0));my(c3=n^3);for(a=2,sqrtnint(c3-5,3),if(ispower(c3-1-a^3,3),return(1)));0 \\ Charles R Greathouse IV, Oct 26 2014
-
PARI
T=thueinit('x^3+1); is(n)=n>8&select(v->min(v[1],v[2])>1,thue(T,n^3-1))>0 \\ Charles R Greathouse IV, Oct 26 2014
Extensions
More terms from Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Definition corrected by Robert Israel, Jun 09 2014
Comments