A050789 Consider the Diophantine equation x^3 + y^3 = z^3 - 1 (x < y < z) or 'Fermat near misses'. The values of z (see A050787) are arranged in monotonically increasing order. Sequence gives values of y.
8, 138, 138, 426, 486, 720, 823, 812, 1207, 2292, 2820, 3230, 5610, 5984, 6702, 8675, 11646, 11903, 16806, 17328, 21588, 24965, 27630, 36840, 31212, 37887, 33857, 34566, 49409, 46212, 59022, 66198, 66167, 56503, 69479, 64165, 78244, 89970
Offset: 1
Keywords
Examples
575^3 + 2292^3 = 2304^3 - 1.
References
- Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
- David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, On number "729", p. 147.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..60
- Eric Weisstein's World of Mathematics, Diophantine Equation - 3rd Powers
Extensions
More terms from Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Edited by N. J. A. Sloane, Feb 22 2009
Comments