cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A064749 a(n) = n*11^n + 1.

Original entry on oeis.org

1, 12, 243, 3994, 58565, 805256, 10629367, 136410198, 1714871049, 21221529220, 259374246011, 3138428376722, 37661140520653, 448795257871104, 5316497670165375, 62658722541234766, 735195677817154577, 8592599484487994108, 100078511642860166659, 1162022718519876379530
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

For a(n)=n*k^n+1: A000012 (k=0), A000027(n+1) (k=1), A002064 (k=2), A050914 (k=3), A050915 (k=4), A050916 (k=5), A050917 (k=6), A050919 (k=7), A064746 (k=8), A064747 (k=9), A064748 (k=10), this sequence (k=11), A064750 (k=12).
Cf. A064757.

Programs

  • Magma
    [n*11^n+1: n in [0..20]]; // Vincenzo Librandi, Sep 16 2011
  • Maple
    k:= 11; f:= gfun:-rectoproc({-1 - (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(0) = 1, a(1) = k+1}, a(n), remember): map(f, [$0..20]); # Georg Fischer, Feb 19 2021

Formula

a(n) = A064757(n) + 2 for n>=1. - Georg Fischer, Feb 19 2021
G.f.: -(110*x^2-11*x+1)/((x-1)*(11*x-1)^2). - Alois P. Heinz, Feb 19 2021
From Elmo R. Oliveira, May 03 2025: (Start)
E.g.f.: exp(x)*(1 + 11*x*exp(10*x)).
a(n) = 23*a(n-1) - 143*a(n-2) + 121*a(n-3). (End)

A242269 Numbers n such that n*6^n+1 is semiprime.

Original entry on oeis.org

3, 5, 11, 12, 18, 20, 21, 24, 25, 35, 43, 45, 53, 58, 61, 71, 73, 75, 123, 124, 140, 147, 157, 205, 208, 233, 243, 245, 293, 301
Offset: 1

Views

Author

Vincenzo Librandi, May 10 2014

Keywords

Comments

The semiprimes of this form are: 649, 38881, 3990767617, 26121388033, 1828079220031489, 73123168801259521, 460675963447934977,...
464 is definitely in this sequence, however 436 may or may not be. - Carl Schildkraut, Aug 28 2015
A continuation in the range 302 ... 1000 would use all terms without "?" and potentially ?-marked terms corresponding to composites with unknown factorization: 436?, 464, 511?, 512, 613, 662?, 720, 730, 802?, 865?, 943. - Hugo Pfoertner, Aug 05 2019

Crossrefs

Cf. similar sequences listed in A242203.

Programs

  • Magma
    IsSemiprime:=func; [n: n in [1..435] | IsSemiprime(s) where s is n*6^n+1];
    
  • Mathematica
    Select[Range[435], PrimeOmega[# 6^# + 1] == 2 &]
  • PARI
    is(n)=bigomega(n*6^n+1)==2 \\ Anders Hellström, Aug 28 2015

Extensions

a(19)-a(30) from Carl Schildkraut, Aug 28 2015
Showing 1-2 of 2 results.