A050985 Cubefree part of n.
1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 6, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70, 71, 9, 73, 74, 75
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
- Henry Bottomley, Some Smarandache-type multiplicative sequences.
- Eric Weisstein's World of Mathematics, Cubefree Part.
- Eric Weisstein's World of Mathematics, Dirichlet Generating Function.
Programs
-
Maple
A050985 := proc(n) n/A008834(n) ; end proc: seq(A050985(n),n=1..40) ; # R. J. Mathar, Dec 08 2015
-
Mathematica
cf[n_]:=Module[{tr=Transpose[FactorInteger[n]],ex,cb},ex= tr[[2]]- Mod[ tr[[2]],3];cb=Times@@(First[#]^Last[#]&/@Transpose[{tr[[1]], ex}]);n/cb]; Array[cf,75] (* Harvey P. Dale, Jun 03 2012 *) f[p_, e_] := p^Mod[e, 3]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
-
PARI
a(n) = my(f=factor(n)); f[,2] = apply(x->(x % 3), f[,2]); factorback(f); \\ Michel Marcus, Jan 06 2019
-
Python
from operator import mul from functools import reduce from sympy import factorint def A050985(n): return 1 if n <=1 else reduce(mul,[p**(e % 3) for p,e in factorint(n).items()]) # Chai Wah Wu, Feb 04 2015
Formula
Multiplicative with p^e -> p^(e mod 3), p prime. - Reinhard Zumkeller, Nov 22 2009
Dirichlet g.f.: zeta(3s)*zeta(s-1)/zeta(3s-3). - R. J. Mathar, Feb 11 2011
a(n) = n/A008834(n). - R. J. Mathar, Dec 08 2015
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / (1890*Zeta(3)). - Vaclav Kotesovec, Feb 08 2019
Comments