cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050985 Cubefree part of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 6, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70, 71, 9, 73, 74, 75
Offset: 1

Views

Author

Eric W. Weisstein, Dec 11 1999

Keywords

Comments

This is an unusual sequence in the sense that the 83.2% of the integers that belong to A004709 occur infinitely many times, whereas the remaining 16.8% of the integers that belong to A046099 never occur at all. - Ant King, Sep 22 2013

Crossrefs

Programs

  • Maple
    A050985 := proc(n)
        n/A008834(n) ;
    end proc:
    seq(A050985(n),n=1..40) ; # R. J. Mathar, Dec 08 2015
  • Mathematica
    cf[n_]:=Module[{tr=Transpose[FactorInteger[n]],ex,cb},ex= tr[[2]]- Mod[ tr[[2]],3];cb=Times@@(First[#]^Last[#]&/@Transpose[{tr[[1]], ex}]);n/cb]; Array[cf,75] (* Harvey P. Dale, Jun 03 2012 *)
    f[p_, e_] := p^Mod[e, 3]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    a(n) = my(f=factor(n)); f[,2] = apply(x->(x % 3), f[,2]); factorback(f); \\ Michel Marcus, Jan 06 2019
  • Python
    from operator import mul
    from functools import reduce
    from sympy import factorint
    def A050985(n):
        return 1 if n <=1 else reduce(mul,[p**(e % 3) for p,e in factorint(n).items()])
    # Chai Wah Wu, Feb 04 2015
    

Formula

Multiplicative with p^e -> p^(e mod 3), p prime. - Reinhard Zumkeller, Nov 22 2009
Dirichlet g.f.: zeta(3s)*zeta(s-1)/zeta(3s-3). - R. J. Mathar, Feb 11 2011
a(n) = n/A008834(n). - R. J. Mathar, Dec 08 2015
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / (1890*Zeta(3)). - Vaclav Kotesovec, Feb 08 2019