cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051001 Sum of 4th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 82, 1, 626, 82, 2402, 1, 6643, 626, 14642, 82, 28562, 2402, 51332, 1, 83522, 6643, 130322, 626, 196964, 14642, 279842, 82, 391251, 28562, 538084, 2402, 707282, 51332, 923522, 1, 1200644, 83522, 1503652, 6643, 1874162, 130322, 2342084, 626, 2825762, 196964
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) add(x^4, x = numtheory:-divisors(n/2^padic:-ordp(n,2))) end proc:
    map(f, [$1..100]); # Robert Israel, Jan 05 2017
  • Mathematica
    Table[Total[Select[Divisors[n],OddQ]^4],{n,40}] (* Harvey P. Dale, Oct 02 2014 *)
    f[2, e_] := 1; f[p_, e_] := (p^(4*e + 4) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = sumdiv(n , d, (d%2)*d^4); \\ Michel Marcus, Jan 14 2014
    
  • Python
    from sympy import divisor_sigma
    def A051001(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),4)) # Chai Wah Wu, Jul 16 2022

Formula

Dirichlet g.f. (1-2^(4-s))*zeta(s)*zeta(s-4). - R. J. Mathar, Apr 06 2011
G.f.: Sum_{k>=1} (2*k - 1)^4*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Jan 04 2017
a(n) = A001159(A000265(n)). - Robert Israel, Jan 05 2017
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(4*e+4)-1)/(p^4-1) for p > 2. - Amiram Eldar, Sep 14 2020
Sum_{k=1..n} a(k) ~ zeta(5)*n^5/10. - Vaclav Kotesovec, Sep 24 2020
G.f.: Sum_{n >= 1} x^n*(1 + 76*x^(2*n) + 230*x^(4*n) + 76*x^(6*n) + x^(8*n))/(1 - x^(2*n))^5. See row 5 of A060187. - Peter Bala, Dec 20 2021