A051002 Sum of 5th powers of odd divisors of n.
1, 1, 244, 1, 3126, 244, 16808, 1, 59293, 3126, 161052, 244, 371294, 16808, 762744, 1, 1419858, 59293, 2476100, 3126, 4101152, 161052, 6436344, 244, 9768751, 371294, 14408200, 16808, 20511150, 762744, 28629152, 1, 39296688, 1419858, 52541808, 59293, 69343958
Offset: 1
Examples
G.f. = x + x^2 + 244*x^3 + x^4 + 3126*x^5 + 244*x^6 + 16808*x^7 + x^8 + ... - _Michael Somos_, Jul 05 2021
References
- T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 25, Exercise 15.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher
Programs
-
Mathematica
a[n_] := Select[ Divisors[n], OddQ]^5 // Total; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Oct 25 2012 *) f[2, e_] := 1; f[p_, e_] := (p^(5*e + 5) - 1)/(p^5 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *) a[ n_] := If[n == 0, 0, DivisorSigma[5, n / 2^IntegerExponent[n, 2]]]; (* Michael Somos, Jul 05 2021 *)
-
PARI
a(n) = sumdiv(n , d, (d%2)*d^5); \\ Michel Marcus, Jan 14 2014
-
PARI
a(n)=sumdiv(n>>valuation(n,2), d, d^5) \\ Charles R Greathouse IV, Jul 05 2021
-
Python
from sympy import divisor_sigma def A051002(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),5)) # Chai Wah Wu, Jul 16 2022
Formula
Dirichlet g.f.: (1-2^(5-s))*zeta(s)*zeta(s-5). - R. J. Mathar, Apr 06 2011
G.f.: Sum_{k>=1} (2*k - 1)^5*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Jan 04 2017
The preceding g.f. is also 34*sigma_5(x^2) - 64*sigma_5(x^4) - sigma_5(-x), with sigma_5 the g.f. of A001160. Compare this with the Apostol reference which gives the g.f. of a(n)*(-1)^(n+1). - Wolfdieter Lang, Jan 31 2017
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(5*e+5)-1)/(p^5-1) for p > 2. - Amiram Eldar, Sep 14 2020
Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / 11340. - Vaclav Kotesovec, Sep 24 2020
G.f.: Sum_{n >= 1} x^n*R(5,x^(2*n))/(1 - x^(2*n))^6, where R(5,x) = 1 + 237*x + 1682*x^2 + 1682*x^3 + 237*x^4 + x^5 is the fifth row polynomial of A060187. - Peter Bala, Dec 20 2021
Comments