cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051002 Sum of 5th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 244, 1, 3126, 244, 16808, 1, 59293, 3126, 161052, 244, 371294, 16808, 762744, 1, 1419858, 59293, 2476100, 3126, 4101152, 161052, 6436344, 244, 9768751, 371294, 14408200, 16808, 20511150, 762744, 28629152, 1, 39296688, 1419858, 52541808, 59293, 69343958
Offset: 1

Views

Author

Keywords

Comments

The Apostol exercise F(x) is the g.f. of a(n)*(-1)^(n+1). - Michael Somos, Jul 05 2021

Examples

			G.f. = x + x^2 + 244*x^3 + x^4 + 3126*x^5 + 244*x^6 + 16808*x^7 + x^8 + ... - _Michael Somos_, Jul 05 2021
		

References

  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 25, Exercise 15.

Crossrefs

Programs

  • Mathematica
    a[n_] := Select[ Divisors[n], OddQ]^5 // Total; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Oct 25 2012 *)
    f[2, e_] := 1; f[p_, e_] := (p^(5*e + 5) - 1)/(p^5 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
    a[ n_] := If[n == 0, 0, DivisorSigma[5, n / 2^IntegerExponent[n, 2]]]; (* Michael Somos, Jul 05 2021 *)
  • PARI
    a(n) = sumdiv(n , d, (d%2)*d^5); \\ Michel Marcus, Jan 14 2014
    
  • PARI
    a(n)=sumdiv(n>>valuation(n,2), d, d^5) \\ Charles R Greathouse IV, Jul 05 2021
    
  • Python
    from sympy import divisor_sigma
    def A051002(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),5)) # Chai Wah Wu, Jul 16 2022

Formula

Dirichlet g.f.: (1-2^(5-s))*zeta(s)*zeta(s-5). - R. J. Mathar, Apr 06 2011
G.f.: Sum_{k>=1} (2*k - 1)^5*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Jan 04 2017
The preceding g.f. is also 34*sigma_5(x^2) - 64*sigma_5(x^4) - sigma_5(-x), with sigma_5 the g.f. of A001160. Compare this with the Apostol reference which gives the g.f. of a(n)*(-1)^(n+1). - Wolfdieter Lang, Jan 31 2017
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(5*e+5)-1)/(p^5-1) for p > 2. - Amiram Eldar, Sep 14 2020
Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / 11340. - Vaclav Kotesovec, Sep 24 2020
G.f.: Sum_{n >= 1} x^n*R(5,x^(2*n))/(1 - x^(2*n))^6, where R(5,x) = 1 + 237*x + 1682*x^2 + 1682*x^3 + 237*x^4 + x^5 is the fifth row polynomial of A060187. - Peter Bala, Dec 20 2021