cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051009 Reduced denominators of Newton's iteration for sqrt(2).

Original entry on oeis.org

1, 2, 12, 408, 470832, 627013566048, 1111984844349868137938112, 3497379255757941172020851852070562919437964212608
Offset: 1

Views

Author

Keywords

Comments

(2^n)-th Pell numbers. - Sergio Falcon, Dec 04 2008
For n>1, Egyptian fraction expansion of 2-sqrt(2), i.e., 2-sqrt(2) = 1/2 + 1/12 + 1/408 + 1/470832 + ... - Simon Plouffe, Feb 22 2011

Examples

			G.f. = x + 2*x^2 + 12*x^3 + 408*x^4 + 470832*x^5 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Simplify[Expand[(1/(2 Sqrt[2])) ((1 + Sqrt[2])^(2^n) - (1 - Sqrt[2])^(2^n))]], {n, 0, 7}] (* Artur Jasinski, Oct 10 2008 *)
    Do[Print[Fibonacci[2^n,2]],{n,0,10}] (* Sergio Falcon, Dec 04 2008 *)

Formula

a(n) = A000129(2^n).
a(n) = 2*a(n-1)*A001601(n-1). - Joe Keane (jgk(AT)jgk.org), May 31 2002
sqrt(2) = 1 + 1/2 - Sum_{n>=3} (1/a(n)). - Donald S. McDonald, Jan 21 2003
For n>1, a(n) = 2*a(n-1)*sqrt(2*a(n-1)^2+1). - Mario Catalani (mario.catalani(AT)unito.it), May 27 2003
For n>0: a(n) = Sum_{r=0..2^(n-1)-1} binomial(2^n, 2*r+1)*2^r. - Mario Catalani (mario.catalani(AT)unito.it), May 30 2003
For n>=4, a(n) = A098890(n-2) - A098890(n-3). - Kieren MacMillan, Dec 19 2007
a(n+1) = (1/(2*sqrt(2)))*((1 + sqrt(2))^(2^n) - (1 - sqrt(2))^(2^n)). - Artur Jasinski, Oct 10 2008
For n>0, a(n) = sqrt((A001601(n)^2-1)/2). - Jose Hortal, Apr 14 2012
a(1)=1, a(2)=2, a(n) = 2 * a(n-1) * cos(2^(n-3) * arccos(3)). - Daniel Suteu, Dec 01 2016
0 = a(n)^2*(2*a(n+1) + a(n+2)) - a(n+1)^3 if n>0. - Michael Somos, Dec 01 2016
a(n) = A001542(2^(n-2)). - A.H.M. Smeets, May 28 2017