cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A051036 a(n) = binomial(n, floor(n/4)).

Original entry on oeis.org

1, 1, 1, 1, 4, 5, 6, 7, 28, 36, 45, 55, 220, 286, 364, 455, 1820, 2380, 3060, 3876, 15504, 20349, 26334, 33649, 134596, 177100, 230230, 296010, 1184040, 1560780, 2035800, 2629575, 10518300, 13884156, 18156204, 23535820, 94143280, 124403620
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

A051052 a(n) = binomial(n, floor(n/5)).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 6, 7, 8, 9, 45, 55, 66, 78, 91, 455, 560, 680, 816, 969, 4845, 5985, 7315, 8855, 10626, 53130, 65780, 80730, 98280, 118755, 593775, 736281, 906192, 1107568, 1344904, 6724520, 8347680, 10295472, 12620256, 15380937, 76904685
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n,Floor[n/5]],{n,0,40}] (* Harvey P. Dale, Aug 06 2017 *)

A051053 a(n) = binomial(n, floor(n/6)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 7, 8, 9, 10, 11, 66, 78, 91, 105, 120, 136, 816, 969, 1140, 1330, 1540, 1771, 10626, 12650, 14950, 17550, 20475, 23751, 142506, 169911, 201376, 237336, 278256, 324632, 1947792, 2324784, 2760681, 3262623, 3838380, 4496388
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(binomial(n, floor(n/6)), n=0..60); # Robert Israel, Mar 11 2018
  • Mathematica
    Table[Binomial[n,Floor[n/6]],{n,0,50}] (* Harvey P. Dale, Dec 18 2013 *)

Formula

From Robert Israel, Mar 11 2018: (Start)
Let n = 6*k+j, 0 <= j <= 5.
a(n+6)*(k+1)*Product_{m=1..5} (5*k+j+m) = a(n)*Product_{m=1..6} (6*k+j+m).
a(n) ~ sqrt(3/(5*Pi*k))*(6/5)^j*(6^6/5^5)^k as k -> infinity. (End)

A047193 Number of nonempty subsets of {1,2,...,n} in which exactly 1/2 of the elements are <= n/3.

Original entry on oeis.org

0, 0, 2, 3, 4, 14, 20, 27, 83, 119, 164, 494, 714, 1000, 3002, 4367, 6187, 18563, 27131, 38759, 116279, 170543, 245156, 735470, 1081574, 1562274, 4686824, 6906899, 10015004, 30045014, 44352164, 64512239, 193536719, 286097759
Offset: 1

Views

Author

Keywords

Formula

a(n) = C(n, [n/3]) - 1 = A051033(n) - 1. - Ralf Stephan, Mar 16 2004

A066704 Triangle with a(n,k) = C(n,floor(n/k)) with n>=k>=1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 6, 4, 4, 1, 10, 5, 5, 5, 1, 20, 15, 6, 6, 6, 1, 35, 21, 7, 7, 7, 7, 1, 70, 28, 28, 8, 8, 8, 8, 1, 126, 84, 36, 9, 9, 9, 9, 9, 1, 252, 120, 45, 45, 10, 10, 10, 10, 10, 1, 462, 165, 55, 55, 11, 11, 11, 11, 11, 11, 1, 924, 495, 220, 66, 66, 12, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Henry Bottomley, Jan 14 2002

Keywords

Examples

			Rows start:
  1;
  1,  2;
  1,  3, 3;
  1,  6, 4, 4;
  1, 10, 5, 5, 5;
  ...
		

Crossrefs

Row sums are A051054.
Columns include (most of) A000012, A001405, A051033, A051036, A051052, A051053, A062947 etc.
n appears A008619 times in the n-th row.
Cf. A060539.

A355703 a(n) = binomial(n, floor(log(n))).

Original entry on oeis.org

1, 1, 3, 4, 5, 6, 7, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960, 5456, 5984, 6545, 7140, 7770, 8436, 9139, 9880, 10660, 11480, 12341, 13244, 14190, 15180, 16215, 17296, 18424, 19600, 20825
Offset: 1

Views

Author

Christoph B. Kassir, Jul 14 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> binomial(n, ilog(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jul 31 2022
  • Mathematica
    a[n_] := Binomial[n, Floor[Log[n]]]; Array[a, 50] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    a(n) = binomial(n, floor(log(n))); \\ Michel Marcus, Jul 31 2022
  • Python
    from numpy import log
    from math import comb, floor
    for n in range(1, 50):
        x = comb(n, floor(log(n)))
        print("{}, ".format(x), end='')
    
Showing 1-6 of 6 results.