A051044 Odd values of the PartitionsQ function A000009.
1, 1, 1, 3, 5, 15, 27, 89, 165, 585, 1113, 4097, 7917, 29927, 58499, 225585, 444793, 1741521, 3457027, 13699699, 27342421, 109420549, 219358315, 884987529, 1780751883, 7233519619, 14600965705, 59656252987, 120742510607, 495811828759, 1005862035461
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..600
- Eric Weisstein's World of Mathematics, Partition Function Q Congruences
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: a:= n-> b((m->m*(3*m-1)/2)(ceil(-n*(-1)^n/2))): seq(a(n), n=0..30); # Alois P. Heinz, Aug 23 2021
-
Mathematica
PartitionsQ /@ Table[n*((n + 1)/6), {n, Select[Range[50], Mod[#, 3] != 1 & ]}] (* Jean-François Alcover, Oct 31 2012, after Reinhard Zumkeller *)
Formula
Extensions
Missing initial 1 inserted by Sean A. Irvine, Aug 23 2021
Comments