cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051044 Odd values of the PartitionsQ function A000009.

Original entry on oeis.org

1, 1, 1, 3, 5, 15, 27, 89, 165, 585, 1113, 4097, 7917, 29927, 58499, 225585, 444793, 1741521, 3457027, 13699699, 27342421, 109420549, 219358315, 884987529, 1780751883, 7233519619, 14600965705, 59656252987, 120742510607, 495811828759, 1005862035461
Offset: 0

Views

Author

Keywords

Comments

A000009(n) is odd iff n is of the form k*(3*k - 1)/2 or k*(3*k + 1)/2. - Jonathan Vos Post, Jun 18 2005
Eric W. Weisstein comments: "The values of n for which A000009(n) is prime are 3, 4, 5, 7, 22, 70, 100, 495, 1247, 2072, 320397, ... (A035359). These values correspond to 2, 2, 3, 5, 89, 29927, 444793, 602644050950309, ... (A051005). It is not known if a(n) is infinitely often prime, but Gordon and Ono (1997) proved that it is 'almost always' divisible by any given power of 2 (1997)."
Semiprime values begin: a(5) = 15 = 3 * 5, a(11) = 4097 = 17 * 241, a(20) = 27342421 = 389 * 70289, a(24) = 1780751883 = 3 * 593583961, a(28) = 120742510607 = 31 * 3894919697. - Jonathan Vos Post, Jun 18 2005

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> b((m->m*(3*m-1)/2)(ceil(-n*(-1)^n/2))):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 23 2021
  • Mathematica
    PartitionsQ /@ Table[n*((n + 1)/6), {n, Select[Range[50], Mod[#, 3] != 1 & ]}] (* Jean-François Alcover, Oct 31 2012, after Reinhard Zumkeller *)

Formula

a(n) = A000009(A001318(n)). - Reinhard Zumkeller, Apr 22 2006

Extensions

Missing initial 1 inserted by Sean A. Irvine, Aug 23 2021