A051154 a(n) = 1 + 2^k + 4^k where k = 3^n.
7, 73, 262657, 18014398643699713, 5846006549323611672814741748716771307882079584257
Offset: 0
Links
- Jeppe Stig Nielsen, Table of n, a(n) for n = 0..6
- Dario Alpern, Factors of Generalized Fermat Numbers
- Walter Feit, Finite projective planes and a question about primes, Proc. AMS, Vol. 108(1990), 561-564.
- Solomon W. Golomb, Cyclotomic polynomials and factorization theorems, Amer. Math. Monthly 85 (1978), 734-737.
Programs
-
Maple
F:= proc(n,r) local p; p := ithprime(r); (2^(p^(n+1))-1)/(2^(p^n)-1); end: [ seq(F(n,2), n=0..5) ];
-
Mathematica
Table[4^(3^n) + 2^(3^n) + 1, {n, 1, 5}] (* Artur Jasinski, Oct 31 2011 *)
-
PARI
a(n)=1+2^3^n+4^3^n \\ Charles R Greathouse IV, Oct 31 2011
Formula
a(n) = (2^(3^(n+1))-1)/(2^(3^n)-1).
Comments