A001576
a(n) = 1^n + 2^n + 4^n.
Original entry on oeis.org
3, 7, 21, 73, 273, 1057, 4161, 16513, 65793, 262657, 1049601, 4196353, 16781313, 67117057, 268451841, 1073774593, 4295032833, 17180000257, 68719738881, 274878431233, 1099512676353, 4398048608257, 17592190238721, 70368752566273, 281474993487873, 1125899940397057
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..200
- John Elias, Illustration of Initial Terms: 1/4 Sierpinski Square Curve
- Andy Liu, West German Mathematical Olympiad 1982 - Second round, Problem 4, Crux Mathematicorum, p. 105, Vol. 12, May. 86.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
A051156
a(n) = (2^p^2 - 1)/(2^p - 1) where p is the n-th prime.
Original entry on oeis.org
5, 73, 1082401, 4432676798593, 1298708349570020393652962442872833, 91355004067076339167413824240109498970069278721, 7588608256743087977590500540116743445925584618982806531428980886590618779326218241
Offset: 1
A143027
Sturdy prime numbers: p such that in binary notation k*p has at least as many 1-bits as p for all k > 0.
Original entry on oeis.org
2, 3, 5, 7, 17, 31, 73, 89, 127, 257, 1801, 2089, 8191, 65537, 131071, 178481, 262657, 524287, 2099863, 616318177, 2147483647, 4432676798593
Offset: 1
A051155
a(n) = (2^5^(n+1) - 1)/(2^5^n - 1).
Original entry on oeis.org
31, 1082401, 1267650638007162390353805312001, 3273390607896141870013189696827599152293599089395397756694773868291726792119530172040230983402733964346814858022765439290901496446006940490331586560001
Offset: 0
-
Table[(2^5^(n+1) - 1)/(2^5^n - 1),{n,0,3}] (* Stefano Spezia, Dec 23 2022 *)
A051157
a(n) = (2^p^3 - 1)/(2^p^2 - 1) where p = n-th prime.
Original entry on oeis.org
17, 262657, 1267650638007162390353805312001, 31828687130226401637050536789795514059715404495050094614691019248562308626412218127220737
Offset: 1
A245730
Primes of the form 1+2^k+2^(2*k)+...+2^((j-1)*k) for some k>0, j>0.
Original entry on oeis.org
3, 5, 7, 17, 31, 73, 127, 257, 8191, 65537, 131071, 262657, 524287, 2147483647, 4432676798593, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727
Offset: 1
The number 4432676798593 is in the list as it is prime and it is equal to 1+2^7+2^(2*7)+2^(3*7)+2^(4*7)+2^(5*7)+2^(6*7).
- Wells Johnson, On the nonvanishing of Fermat quotients (mod p), J. für Math. 292 (1977), 196-200.
-
from sympy import isprime
sorted([int(('0'*m+'1')*n,2) for m in range(50) for n in range(1,50) if isprime(int(('0'*m+'1')*n,2))])
A198915
a(n) = 1 - 2^k + 4^k where k = 3^n.
Original entry on oeis.org
3, 57, 261633, 18014398375264257, 5846006549323611672814736913013492849365380759553
Offset: 0
Showing 1-7 of 7 results.
Comments