cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A051154 a(n) = 1 + 2^k + 4^k where k = 3^n.

Original entry on oeis.org

7, 73, 262657, 18014398643699713, 5846006549323611672814741748716771307882079584257
Offset: 0

Views

Author

Keywords

Comments

The first three terms are prime. Are there more? Golomb shows that k must be a power of 3 in order for 1 + 2^k + 4^k to be prime. - T. D. Noe, Jul 16 2008
The next term, a(5) has 147 digits and is too large to include in DATA. - David A. Corneth, Aug 19 2020

Crossrefs

Programs

  • Maple
    F:= proc(n,r) local p; p := ithprime(r); (2^(p^(n+1))-1)/(2^(p^n)-1); end:
    [ seq(F(n,2), n=0..5) ];
  • Mathematica
    Table[4^(3^n) + 2^(3^n) + 1, {n, 1, 5}]  (* Artur Jasinski, Oct 31 2011 *)
  • PARI
    a(n)=1+2^3^n+4^3^n \\ Charles R Greathouse IV, Oct 31 2011

Formula

a(n) = (2^(3^(n+1))-1)/(2^(3^n)-1).

A128889 a(n) = (2^(n^2) - 1)/(2^n - 1).

Original entry on oeis.org

1, 5, 73, 4369, 1082401, 1090785345, 4432676798593, 72340172838076673, 4731607904558235517441, 1239150146850664126585242625, 1298708349570020393652962442872833, 5445847423328601499764522166702896582657, 91355004067076339167413824240109498970069278721
Offset: 1

Views

Author

Leroy Quet, Apr 19 2007

Keywords

Comments

a(n) is prime for n in A156585. Conjecture: gpf(a(n)) = gpf(Phi(n,2^n)), where Phi(n,2^n) = A070526(n). - Thomas Ordowski, Feb 16 2014
The conjecture fails at n = 26, where 3340762283952395329506327023033 > 215656329382891550920192462661. Next counterexample for n = 30, but no odd counterexamples found so far. - Charles R Greathouse IV, Feb 17 2014

Crossrefs

Programs

  • Maple
    a:=n->(2^(n^2)-1)/(2^n-1): seq(a(n),n=1..13);
  • Mathematica
    f[n_] := (2^(n^2) - 1)/(2^n - 1); Array[f, 12]
    F[n_] := Plus @@ Table[2^((n - i)*n), {i, 1, n}] (* Enrique Pérez Herrero, Feb 23 2009 *)
    Table[(2^(n^2) - 1)/(2^n - 1), {n, 1, 20}] (* Vincenzo Librandi, Feb 18 2014 *)
  • PARI
    a(n)=(2^n^2-1)/(2^n-1) \\ Charles R Greathouse IV, Feb 17 2014

Formula

a(n) = Sum_{k=1..n} 2^((n-k)*n). - Enrique Pérez Herrero, Feb 23 2009

Extensions

More terms from Robert G. Wilson v and Emeric Deutsch, Apr 22 2007

A156585 Numbers such that (2^(n^2)-1)/(2^n-1) is prime.

Original entry on oeis.org

2, 3, 7, 59
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

It is easy to see that all terms of this sequence must be prime; this motivates the definition of A051156(n) = (2^prime(n)^2-1)/(2^prime(n)-1).
No further terms up to n=1999. - Andreas Höglund, Apr 06 2018

Crossrefs

Cf. A051156.

Programs

  • Mathematica
    Select[Prime[Range[17]], PrimeQ[Cyclotomic[#^2, 2]] &] (* Arkadiusz Wesolowski, May 13 2012 *)
  • PARI
    for/*prime*/( n=1,99, is/*pseudo*/prime( (2^n^2-1)/(2^n-1) ) & print1(n,","))

A051155 a(n) = (2^5^(n+1) - 1)/(2^5^n - 1).

Original entry on oeis.org

31, 1082401, 1267650638007162390353805312001, 3273390607896141870013189696827599152293599089395397756694773868291726792119530172040230983402733964346814858022765439290901496446006940490331586560001
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2^5^(n+1) - 1)/(2^5^n - 1),{n,0,3}] (* Stefano Spezia, Dec 23 2022 *)

A051157 a(n) = (2^p^3 - 1)/(2^p^2 - 1) where p = n-th prime.

Original entry on oeis.org

17, 262657, 1267650638007162390353805312001, 31828687130226401637050536789795514059715404495050094614691019248562308626412218127220737
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2^Prime[n]^3 - 1)/(2^Prime[n]^2 - 1),{n,4}] (* Stefano Spezia, Dec 23 2022 *)

A055515 a(n) = (2^n - 1)/product(2^p - 1) where the product is over all distinct primes p that divide n.

Original entry on oeis.org

1, 1, 1, 5, 1, 3, 1, 85, 73, 11, 1, 195, 1, 43, 151, 21845, 1, 12483, 1, 11275, 2359, 683, 1, 798915, 1082401, 2731, 19173961, 704555, 1, 1649373, 1, 1431655765, 599479, 43691, 8727391, 3272356035, 1, 174763, 9588151, 11822705675, 1, 1649061309, 1
Offset: 1

Views

Author

Leroy Quet, Jul 03 2000

Keywords

Examples

			a(12) = (2^12 -1)/((2^2 -1) (2^3 -1)) = 195.
		

Crossrefs

Cf. A055977.

Programs

  • Mathematica
    Table[(2^n-1)/Times@@(2^#-1&/@FactorInteger[n][[;;,1]]),{n,50}] (* Harvey P. Dale, Jan 18 2025 *)
  • PARI
    a(n) = my(f = factor(n)); (2^n-1)/prod(i=1, #f~, 2^f[i, 1] -1); \\ Michel Marcus, May 18 2014

Formula

For p prime, a(p) = 1. - Michel Marcus, May 18 2014
For p prime, a(p^2) = A051156(n). - Michel Marcus, May 18 2014

A065869 a(n) = (2^(prime(n)^2) + 1)/(2^prime(n) + 1).

Original entry on oeis.org

57, 1016801, 4363953127297, 1297440698667560637290197228189697, 91332703321545501540374299322682400349546864641, 7588492464653843921408409789152927606760448769729047438304822150910706202078740481
Offset: 2

Views

Author

Benoit Cloitre, Dec 07 2001

Keywords

Crossrefs

Programs

  • Mathematica
    (2^#^2+1)/(2^#+1)&/@Prime[Range[2,10]] (* Harvey P. Dale, May 09 2025 *)
  • PARI
    a(n) = { (2^(prime(n)^2) + 1)/(2^prime(n) + 1) } \\ Harry J. Smith, Nov 02 2009

Formula

a(n) = A069255((prime(n)+1)/2). - Andrew Howroyd, Dec 09 2024

A297625 Primes of the form (2^(p^k) - 1)/(2^(p^(k - 1)) - 1), with p prime and k > 1.

Original entry on oeis.org

5, 17, 73, 257, 65537, 262657, 4432676798593
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 04 2018

Keywords

Comments

Primes of the form Phi(x, 2), where x is a proper prime power and Phi is the cyclotomic polynomial.
Together with 3, supersequence of A019434.
Also called Mersenne-Fermat primes.
a(8) has 1031 digits and is too large to include.

References

  • Fredrick Kennard, Unsolved Problems in Mathematics, Lulu Press, 2015, p. 160.

Crossrefs

Programs

  • Magma
    lst:=[]; r:=7; pr:=PrimesUpTo(r); for k in [2..r] do for c in [1..#pr] do p:=pr[c]; if p^k le r^2 then MF:=Truncate((2^(p^k)-1)/(2^(p^(k-1))-1)); if IsPrime(MF) then Append(~lst, MF); end if; end if; end for; end for; Sort(lst);
Showing 1-8 of 8 results.